
Image processing methods in
automatic generalization of digital

maps
Istvan Elek

Faculty of Informatics, Eotvos Lorand University
elek@map.elte.hu, http://mapw.elte.hu/elek

Abstract

Either paper or digital maps have limited capacity. Obviously, if too
many objects are put on the map it becomes chaotic and unreadable.
In order to avoid this high object density a process called generaliza-
tion is needed. Untill now the generalization was made by the human
interaction and intelligency. This paper introduces an automatic gener-
alization technique based on digital elevation models and digital filter-
ing methods. All map objects such as parcels, roads, rivers are on the
Earth surface. If we change this surface by digital filters like low-pass
filters, every object will change on it. Surface smoothing produces sur-
face generalization, consequently every object on it will be generalized
automatically. Further digital filters can be applied well, such as edge
preserving filters. This paper deals with the application of smoothing.

1. Introduction

In traditional cartography there is a typicaly human made interaction
the generalization. This process helps to avoid to produce overloaded,
chaotic maps that contain too many objects. Large scale maps such
as topographic maps contain every object on the Earth surface. In the
GIS, the scale is very changable regarding the wide range function-
alities of zoom in, zoom out, pan, and so on. If the scale becomes
smaller (zoom out) the object density goes higher and the digital map
can easily become overloaded, unreadable and chaotic.

Figure 1: On the left side figure the Scandinavian Penninsula can be
seen on a small scaled map. The coastline is generalized in it, obvi-
ously. On the right side a south part of it was figured in a larger scaled
map with less generalized and more accurate coastlines

It is well known since B. Mandelbrot that the length of coastlines de-
pends on the scale. The extensions of map objects must depend on
the scale. From the large scale to small one the generalization pro-
duces the proper object density. Look at the Fig. 1 for the scale depe-
dency of digital maps. Smaller scaled map requires generalized map
content.

2. Earth surface and digital elevation models

The real Earth surface is a complicated geometrical object that can
not be described in analytical form. There are many objects on it such
as parcels, buildings, rivers, roads, settlements and so on. If the sur-
face is defined well, the position of every object on it can be properly
described this surface. Let us look at digital surface models and its
mathematical background. This approach is based on the Sampling
Theorem and the Fourier transform. A digital surface model is going
to describe the analogue surface as accurate as possible. What does
accurate mean in this context? The sampling rate determines the ac-
curacy first of all. Sampling rate gives the regular grid size which is the
distance between two points on the surface. A sampled surface con-
sists of x, y, z coordinates in every grid point. Since the objects men-
tioned above are on the surface the accuracy of their position depends
on the accuracy of the surface. This fact serves a correct mathemati-
cal model for the automatic generalization. Larger sampling distance in
the resampling process gives more generalized map. Extremaly large
sampling rate can remove complete objects that are negligible at a
certain scale.

2.1 Outline of the sampling theorem
Let us name the interval between two sampling events sampling period
and denote it τ . The sampling period can be time dimension if we have
time signals, but it can be distance dimension, if the sampling process
is spatial such as digital photos, satellite images or digital elevation
models.

Figure 2: The sketch of the ideal sampling process. Analogue function
g(t), Dirac-impulse train as a tool of sampling with τ sampling period,
and the sampled function [5, 6]

Let δ be the sampling period. Let g(t) denote a time function and the
tool of the sampling process, which is a Dirac-impuls train, and finally
the result of the sampling process, which is the digitized time function
(2). The sampling process can be defined as a product of the g(t)
function and the Dirac-impulse train.

g(t)

∞∑
k=−∞

δ(t− kτ ) =
∞∑

k=−∞
g(kτ )δ(t− kτ )

where the Dirac-δ is the following:
δ(t) = 0, if t 6= 0 and

∫∞
−∞ δ(t)dt = 1

Remember the definition of the convolution of f (t) and g(t) functions:
h(t) = f (t) ∗ g(t) =

∫∞
−∞ f (τ )g(t− τ )dτ

Let us look at the following formula which is essential in understanding
of the sampling process:
f (t) ∗ g(t) = F (f )G(f ) and F (f ) ∗G(f ) = f (t)g(t)
The convolution of two functions in the time domain is equal to the
product of their Fourier transform in the frequency domain, and vice
versa. Let us investigate the spectra of the analogue and the digitized
functions. Let G(f ) denote the spectra of the analogue, and Gd(f )
the spectra of the digitized function. Regarding the properties of the
Fourier transform of the Dirac-δ and the convolution, the spectra of the
digitized (sampled) function is

Gd(f ) = G(f ) ∗ 1
τ

∞∑
k=−∞

δ(f − k

τ
) =

1

τ

∞∑
k=−∞

G(f − k

τ
)

Figure 3: The spectra of the sampled function becomes periodical.
Aliases appeared in the spectrum of the sampled (digitized) function.
In order to remove aliases and to preserve the principal part of the
spectra (cut), truncate it with a square function [2, 3]

Compare the spectra of the analogue and digitized functions. There
is a remarkable difference between them. The spectra of the sampled
(digitized) function is not periodic, but the spectra of the sampled one
becomes periodic because of sampling (Fig. 3)

2.2 The Square function and its Fourier transform
Let us define the square function, which is very important in this con-
text. s(t) = a if |t| < τ/2 and s(t) = 0 else. The Fourier transformed
square function is the sinc (sinus cardinalis) function.

S(f ) =

∫ ∞
−∞

s(t)e−2πiftdt = a

∫ τ/2

−τ/2
e−2πiftdt = a

sin(πfτ )

πfτ

Let s(t) and g(t) denote functions in the time domain and S(f ) and
G(f ) functions their spectras in the frequency domain. Consequently,
the product of a spectra G(f ) with a square-function S(f ) is equal to
the convolution of sinc(t) and g(t).

2.3 Recovery of the analogue function
If you take sampling theory into account while you are digitizing, the
sampled data series is equivalent to the analogue one. In this case
there is no data waste. How is it possible? Regarding the prop-
erties of the convolution and the inverse Fourier transformed square
function, the product of the spectra and square function with τ height
and 1/τ width in the frequency domain is equivalent to the convolu-
tion of the original function and the sinc function in the time domain.
Let s(t) be the square function. In order to keep the principal part
of the spectra only, cut the outside parts, the so called aliases (Fig.
3:Gd(f )τs(fτ ) = G(f )
In this way, the spectra of the analogue and digitized dataset becomes
the same. Consequently, the analogue dataset can be recovered from
the digitized dataset without any waste. Remember, the sampling pro-
cess is made in time domain, so we must know what happens in the
time domain if we truncate the aliases in the frequency domain. Let us
have the invert Fourier transformed truncated spectra.

F−1{Gd(f )} =
∞∑

k=−∞
g(kτ )δ(t− kτ )

taking into account the followings: F−1{τs(fτ )} = sinc(t/τ − k)
The recovery of the original signal can be made by the next step:(∑∞

k=−∞ g(t)δ(t− kτ )
)
sinc(t/τ ) =

∑∞
k=−∞ g(kτ )sinc(t/τ − k)

Figure 4: The process of the signal recovery. The recovered curve is
made by the product of the samples and the sinc functions at proper
arguments [5]

The recovered values in the sampling places are constructed by the
multiplication of samples and values of the sinc function with proper
argument (Fig. 4). So the recovered values are exactly the same as
the values of the analogue function in the same argument. The re-
covered values can be computed by the multiplication of samples and
values of sinc function with proper argument in arbitrary arguments, in
any place.

2.4 Sampling in 2D

If we apply the sampling process to a surface, the sampling tool will
be like a yogi’s nailed bed (Fig. 5). Let us have a τ sampling distance
for defining a grid. Every grid point has x, y, z coordinates. This is
the digital elevation model (DEM). The resolution of the DEM depends
on τ . As mentioned above every object on the Earth properly defined
by a grid. There are other ways of representing the terrain elevation
[3, 7, 8], but the current one is precisely adjustable for different scales,
consequently for the automatic generalization.

Figure 5: A surface sampled by a 2D Dirac-δ series [1]

3. Examples

Let us look at some examples where the downsampling technique is
applied for generalizing an elevation database (Fig. 6, 7, 8, 9). The
original data source was a 50× 50m elevation grid. From this database
a pretty 3D view was generated (Fig. 6). A new sampling period was
set up 500m and the downsampled 3D view can be seen on Fig. 7.
Shaded elevation was generated both from the original DEM (Fig. 8)
and downsampled one as well (Fig. 9).

Figure 6: A 3D elevation model with 50m grid size before resampling

Figure 7: The 3D elevation model with 500m grid size after downsam-
pling

Figure 8: Coloured contours with 50m grid size before resampling

Figure 9: Coloured contours with 500m grid size after downsampling

4. Conclusion

Some image processing technique such as low-pass filtering is a very
good method for automatic generalisation of the Earth surface, conse-
quently each map object on it. Regarding the theoretical background
of the sampling theory the downsampling produces smoothed dataset.
Instead of using simple low-pass filters on the original database down-
sampling produces smoothed digital elevation model also, but smaller
sized database.
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