Összefüggés a szintezési vonalakon végzett graviméteres mérések sűrűsége és a geopotenciális értékek között

Csapó Géza¹-Földváry Lóránt²-Tóth Gyula³

¹ Geofizikai Intézet (ELGI),
² MTA-BME Fizikai Geodézia és Geodinamikai Kutatócsoport
³BME Általános és Felsőgeodézia Tanszék

A dolgozatban a szintezési vonalak pontjai geopotenciális értékének meghatározási módjaival foglalkozunk – kísérleti mérések alapján.

1. Bevezetés

(🏠

2007-ben elkezdődött hazánkban az Egységes Országos Magassági Alaphálózat (EOMA) I. rendű szintezési vonalainak újramérése és modernizációja (Csapó, 2008A). Az utolsó mérési ciklus óta eltelt több évtizedben mind a műszer-, mind a számítástechnika jelentős fejlődésen ment át. Ugyanakkor az eltelt hosszú idő alatt a hálózat számos pontja elpusztult, amelyek pótlása (pontállandósítás módja és az új pontok helyének kiválasztása) gondos tervezést igényel. Ezért, valamint gazdaságossági szempontok miatt a mérésekre vonatkozó korábbi szabályzat (MÉM, 1975) módosításra szorul. Korábban a magassági értékeket valamilyen metrikus mérőszámmal jellemezték, jelenleg a geopotenciális érték a hivatalos mérőszám (ÉKME, 1962). Tekintettel arra, hogy a geopotenciális érték munkajellegű mennyiség (dimenziója: kilogalméter), ezért meghatározásához a geometriai alapú szintezésen kívül fizikai alapú gravimetriai mérésekre van szükség.

2. Gravimetriai mérések

A szintezési vonalakon a mérési pontok nehézségi gyorsulási értékeit relatív graviméteres mérésekkel határozzuk meg. A nehézségi mérések aktuális referenciaszintjét korszerű abszolút graviméterekkel meghatározott nehézségi gyorsulási értékkel rendelkező abszolút állomások hálózata biztosítja mind hazánkban, mind Európa legtöbb országában. A hazai országos gravimetriai hálózat (*Csapó*, 2000) része az Egységes Európai Gravimetriai Hálózatnak (UEGN), ami azt jelenti, hogy a hazai szintezési hálózat határmenti csatlakozó szakaszain is végzett graviméteres méréseken keresztül a hazai szintezési pontokra számítható geopotenciális értékek kompatibilisek a szomszédos országokban meghatározottakkal.

Mindezekből következik, hogy a szintezési vonalakon végzett relatív graviméteres méréseket csatlakoztatni kell a hazai abszolút állomásokhoz. Magyarországon jelenleg húsz abszolút állomás található, amelyek egy része távolabb van az EOMA I. rendű szintezési vonalaitól. Gazdasági megfontolást igényel, hogy szükséges-e további állomásokat telepíteni – a szintezési vonalak közelébe –, vagy elegendő a meglévő állomásokhoz történő bemérés, ami többletmérési időt és költséget igényel. A megfontolás további szempontja, hogy megfelelő számú abszolút állomás birtokában lerövidíthető a relatív graviméterek aktuális évi méretarány tényezőjének meghatározási ideje. Ezeket a méréseket jelenleg az országos graviméter kalibráló alapvonalon végzik, amely munka mintegy 14 napot vesz igénybe.

A gravimetriai mérések célja alapadatok biztosítása a vonalpontok Faye-anomália értékének kiszámításához. Fontos kérdés, hogy milyen sűrűségben kell a szintezési vonalakon graviméteres méréseket végezni ahhoz, hogy megfelelő

۲

pontosságú geopotenciális értékeket számíthassunk a vonalak valamennyi pontjára. Ezt pedig alapvetően az szabja meg, hogy milyen pontosságot tervezünk a szintezett magassági értékekre. Ismeretes, hogy a nehézségi erő egyrészt a Föld egyenetlen belső tömegelrendeződésének, másrészt a mérési pontok tengerszint feletti magasságának és földrajzi szélességének függvénye. A szintezési vonalakon végzendő graviméteres mérések pontsűrűségét a vonatkozó korábbi ajánlás (BME, 1968) a terepviszonyok függvényében (sík-, domb- és hegyvidéki jellegű vonalak) határozta meg. Nyilvánvaló, hogy minél több vonalponton végezzük a méréseket, annál pontosabban interpolálhatók a "g" értékek a vonal tetszőleges pontjára. A mérési pontsűrűségnek azonban határt szab egyrészt a mérések elvégzéséhez szükséges idő, másrészt a mérések költségei.

Az EOMA jövőbeli fejlesztése kapcsán új gondolat merült fel a szintezési vonalakon szükséges gravimetriai mérésekkel kapcsolatban (Papp et al, 2009). A szerzők véleménye szerint a rendelkezésre álló jelenlegi országos gravimetriai adatbázis, a gravitációs modellezési eljárások és nagy felbontású digitális terep- és sűrűségmodellek felhasználásával a szintezési vonalakon ténylegesen végzett gravimetriai mérések kiegészíthetők olyan modellekkel, amelyek felhasználásával minden tekintetben kielégítő megbízhatóságú geopotenciális érték levezetésére van mód a szintezési hálózatban. Megjegyezzük, hogy az általuk alkalmazott interpolációs eljárás elvileg eltér a jelenlegi cikkben ismertetésre kerülő matematikai módszerrel végzettől, mert a hivatkozott irodalomban egy digitális terep- és tömegmodell felvételével fizikai értelmű interpolációs módszert ismertettek.

A matematikai módszerrel végzett interpolációra vonatkozóan pályázat anyagi támogatásával (OTKA K72806) végeztünk vizsgálatokat. Ezek részben különböző domborzati viszonyú vonalakon végzett graviméteres mérésekre, részben a pontok közötti potenciálkülönbségek meghatározási lehetőségeire vonatkoztak. A graviméteres mérések kivitelezését és a mérések feldolgozási módját a már hivatkozott irodalomban (*Csapó*, 2008A) részletesen ismertettük, a továbbiakban az egyes mérési vonalakon végzett munkáinkról adunk tájékoztatást.

3. A normáljavítás meghatározása

Ismeretes, hogy szintezéssel a szintfelületek távolságát határozzuk meg a műszerállás helyén. Ha az egyes műszerállásokban kapott magasságkülönbségek összege megadná a vonal kezdő- és végpontja közötti magasságkülönbséget. A szintfelületek összehajlása miatt azonban a szintezés eredménye függ attól az úttól, amelyen azt végeztük. Emiatt a szintezés nem egyértelmű művelet. Amennyiben viszont nem a szintfelületek egymás közötti távolságából akarunk eredményre jutni, hanem abból a munkából, amelyet akkor végzünk, ha egységnyi tömeget mozgatunk át egyik szintfelületről a másikra, akkor helyes eredményre jutunk. A szintfelületek potenciál különbségének meghatározása ugyanis egyértelmű feladat. Ezért nagy területen kialakított, nagy pontosságú magassági alaphálózatoknál célszerű munkajellegű magasságfogalmat használni. Hazánkban a kéregmozgási hálózatnál a normálmagasságot használjuk, amelyet a felsőrendű szintezés eredményeinek utólagos javításával ún. normáljavítással $(\Delta_{\rm N})$ határozhatunk meg. Ehhez a következő összefüggéseket alkalmazzák (ÉKME, 1962):

a szintfelületek párhuzamosak lennének, akkor

$$\Delta_{\rm N} = {\rm K}_1 + {\rm K}_2$$

$$K_1 = -\kappa \cdot S_m \cdot H_{AB}$$
, abol:

- S_m szintezési szakasz meridián irányú vetülete km-ben
- H_{AB} az A és B pont közötti szintezési szakasz közepes közelítő magassága méter egységben, Balti magassági rendszerben
- K₁ előjele észak felé haladó vonalak esetén (vagyis pozitív Sm esetén) negatív

 $K_2 = (g-\gamma)_{AB}$, 981· h_{AB} , ahol:

- $(g-\gamma)_{AB}$ az A és B pontok közötti közepes szabadlevegő rendellenesség (Faye-anomália) mGal-ban, 0,1 mGal élességgel (1 mGal = 10^{-5} ms⁻²)
- h_{AB} a szakasz nyers magasságkülönbsége méter egységben.

 K_1 és K_2 értékei – a változók megjelölt élességének megfelelően – mm egységben adódnak.

4. Síkvidéki vonalon végzett kísérleti mérések

A kísérleti mérések elvégzéséhez szükséges vonalat a Cegléd és Nagykőrös közötti főútvonalon jelöltük ki (ezen az útvonalon halad az EOMA 17. számú, 2008-ban újramért I. rendű vonalszakasza is). 12 km-es szakaszon átlagosan 600

2010/1 (62)

2010.01.18. 8:58:30

méterenként húsz pontot állandósítottunk Hiltiszöggel és festéssel. A viszonylag nagy közúti forgalom miatt néhány pontot az úttól 15-20 méterre földbe levert fakaróval jelöltünk meg. A mérési pontok vízszintes koordinátáit – a többi kísérleti vonalhoz hasonlóan – kézi GPS vevővel, ± 5 m megbízhatósággal, magasságukat vonalszintezéssel határoztuk meg, 1-3 mm hibával. A magasságok számításához a vonalon talált Bendefy-féle pontok adatait használtuk fel. (A szintezési pontok magassági értékeinek ellenőrzésére ezeket a pontokat is összeszinteztük). A vonalpontok legnagyobb magasságkülönbsége 12 méter és a 104 méter magasságú kezdőponttól nagyjából egyenletesen emelkedik a 116 méter magasságú végpontig. A vonalpontokat, a környék Bouguer-anomália térképét és az interpolációs számításokhoz felhasznált graviméteres pontok helyét az 1. ábrán tüntettük fel. (Az országos gravitációs adatbázisban az interpolálásra kijelölt 11 × 11,5 km-es vizsgálati területen 689 mért gravimetriai pont található - majdnem homogén eloszlásban. Az átlagos pontsűrűség 5,4 pont/km²). Az adatbázis számításainkhoz felhasznált pontjai részben az országos áttekintő graviméteres mérésekből, részben hálózatban végzett korábbi részletes felmérésből származnak.

A vonalpontok számításhoz felhasznált adatait az *1. táblázatban* állítottuk össze. (A táblázatok – terjedelmi okoból – cikkünk végén találhatóak.)

A vizsgálatokhoz a vonal graviméteres és szintezési méréseiből előállítottunk egy referencia megoldást a szintezési vonal pontjai közötti geopotenciál értékek és normálmagasságok különbségeire (2. táblázat). A 2. táblázatból látható, hogy a teljes vonalra a normálmagasságok K_1 javításának értéke 1,12 mm, a mért értékekből számított K_2 javítás értéke pedig mindössze 0,08 mm. A K_2 javítás igen kis értéke egyrészt a vonal pontjai közötti csekély magasságkülönbségekből, másrészt a nehézségi rendellenességek egyenletesnek tekinthető változásából adódik.

Az első vizsgálattal az országos gravitációs adatbázisnak az *1. ábrán* látható pontjaiból a szintezési vonalra interpolált "g" értékek hatását vizsgáltuk a síkvidéki vonal geopotenciális értékeire és normálmagasság különbségeire. A számításhoz a krígelési eljárást alkalmaztuk (Sárhidai 1993, 1994). Az adatbázis pontjaiból legkisebb négyzetes kollokációval Bouguer-anomália értékeket interpoláltunk a szintezési vonal pontjaira. Ezután az interpolált Bouguer-anomáliákból Faye-anomáliákat számítottunk.

Az interpolált Faye-anomáliák és azoknak a mért értékektől való eltérései a 2. *ábrán* láthatók.

Az interpoláció becsült középhibája az öszszes ponton (a 4274 számú kezdőpont kivételével, amely pont a graviméteres mérések kiinduló bázispontja volt és távolabb van a kijelölt vonaltól) \pm 0,36 mGal. Ez jó összhangban van a ténylegesen kapott eltérések \pm 0,28 mGal-os szórásával. Az interpolált Faye-anomáliákkal ismét elvégeztük a szintezési vonal pontjai közötti geopotenciális értékek és normálmagasság különbségek számítását. A teljes normálmagasság különbség 0,01 mm-nél kevesebbel tér el a ténylegesen mért "g" értékekkel végzett számításból nyert eredménytől. Másképpen: a K₂ javítás is csak kb. 7%-kal változott meg az interpoláció következtében.

1. ábra A Cegléd–Nagykőrös síkvidéki vonal

GEODÉZIA ÉS KARTOGRÁFIA

2010/1 (62)

12

(🏠

()

 (\bullet)

Másodszor azt vizsgáltuk meg, hogyan befolyásolja a vonalon mért graviméteres pontok számának csökkentése az ismertetett síkvidéki szintezési vonal pontjainak geopotenciális értékeit és normálmagasságait. Elsősorban a normálmagasságok K2 javításának a változását vizsgáltuk, mert a ténylegesen mért "g" értékek ezen javítás számításában játszanak szerepet. A pontsűrűséget felére, negyedére stb. csökkentve egyre kevesebb mért "g" értéket vettünk figyelembe a számításnál. A K2 értéke 0,08 mm-ről fokozatosan 0,11 mm-re nőtt az utolsó ritkításnál, amikor már csak egyetlen mért "g" értékkel számoltunk a teljes vonalra. A javítás relatív változása a teljes vonalon a ritkításoknak megfelelően sorra 3, 10, 19, 25 és 28%-os volt. Ez (az első ritkítást kivéve) meghaladta az interpoláció miatti 7%-os változást, de abszolút értékben még mindig csupán maximum 0,03 mm-es, ami elhanyagolható. A számított geopotenciál különbségek változása hasonló mértékű. Az egyetlen mért "g" értékkel végzett számításnál a potenciál különbség 20 mGal·m változását tapasztaltuk a teljes szintezési vonalon.

5. Dombvidéki vonalon végzett kísérleti mérések

A graviméteres mérések szempontjából dombvidéki jellegűnek tekintjük azt a szintezési szakaszt, amelynek terepmagassága 150–350 m és a szakasz végpontjainak magasságkülönbsége 5–60 m közötti intervallumba esik (BME, 1968). Ezeknek a feltételeknek jó közelítéssel megfelelt az a vonal, amelyet Vácszentlászló és Gödöllő

ábra A Vácszentlászló–Gödöllő dombvidéki vonal

2010/1 (62)

között jelöltünk ki a gödöllői dombság területén (*3. ábra*). A vonal létesítését a síkvidéki szakasznál írtakhoz hasonlóan végeztük azzal a különbséggel, hogy a vonalpontok magasságát nem vonalszintezéssel, hanem trigonometriai szintezéssel határoztuk meg. Az így nyert magassági értékek megbízhatósága megegyezett a síkvidéki pontokéival. (A graviméteres mérésekre vonatkozóan – a dolgozatban ismertetett vizsgálatokhoz – nem szükséges a magasságkülönbségek néhány mm-nél jobb meghatározása).

A vonal legnagyobb magasságkülönbsége 120 m, a végpontok magasságkülönbsége pedig 81 m. Az interpoláló módszer alkalmazásához az országos adatbázisban 1270 adatot találtunk a vonal környezetében kijelölt mintegy 100 km²-es területen. A vonal számításokhoz felhasznált adatait a *3. táblázatban* állítottuk össze.

A számítások menete – a többi vonalnál végzetthez hasonlóan – azonos volt a síkvidéki szakasznál ismertetetthez. Az eredményeket a 4. táblázat tartalmazza. A teljes vonalra a normálmagasságok K₁ javításának értéke csupán – 0,10 mm, amely a vonal K–Ny-i iránya miatt van, a mért értékekből számított K₂ javítás értéke viszont 0,95 mm, amely több mint tízszerese a síkvidéki vonal K₂ értékének a nagyobb magasságkülönbség miatt.

Az első számítással az országos gravitációs adatbázisnak a *3. ábrán* látható pontjaiból a szintezési vonalra interpolált "g" értékek hatását vizsgáltuk a dombvidéki vonal geopotenciális értékeire és normálmagasság különbségeire. Az alkalmazott eljárás hasonló volt, mint a síkvidéki vonal esetében.

4. ábra Az interpolált Faye-anomália értékek eltérése a mérésekből számítottaktól a Vácszentlászló–Gödöllő vonalon

GEODÉZIA ÉS KARTOGRÁFIA

Az interpolált Faye-anomáliák és azoknak a mért értékektől való eltérései a 4. ábrán láthatók. Az interpoláció becsült középhibája az összes ponton \pm 0,62 mGal, ami a vártnak megfelelően nagyobb, mint a síkvidéki vonal esetében volt. Az interpolált Faye-anomáliákkal ismét elvégeztük a szintezési vonal pontjai közötti geopotenciális értékek és normálmagasság különbségek számítását. A teljes normálmagasság különbség 0,28 mm-rel tér el a ténylegesen mért "g" értékekkel végzett számításból nyert eredménytől, vagyis a K₂ javítás kb. 29%-kal változott meg az interpoláció következtében.

Másodszor azt vizsgáltuk meg, hogyan befolyásolja a vonalon mért graviméteres pontok számának csökkentése az ismertetett dombvidéki szintezési vonal pontjainak geopotenciális értékeit és normálmagasságait. Ennél a területnél is a normálmagasságok K2 javításának a változását vizsgáltuk az előzőekben mondottak miatt. A pontsűrűséget felére, negyedére, stb. csökkentve egyre kevesebb mért "g" értéket vettünk figyelembe a számításnál. A K₂ értéke 0,95 mmről 1,01 mm-re nőtt akkor, amikor a graviméteres pontok átlagos távolságát 375 méterről 1188 méterre növeltük. A javítás relatív változása a teljes vonalon ekkor 6%-os volt. Ha csupán a kezdő- és végpont mért értékeivel számoltunk és a többi pontra magasságfüggő interpolációt végezve számítottuk ki a Faye-anomáliákat, a K₂ értéke 0,95 mm-ről 0,88 mm-re csökkent és így a teljes vonalon a változás 7%-os volt. A kis változás annak tulajdonítható, hogy a területen a Faye-anomáliák magasságfüggő változása majdnem lineáris (a lineáris regresszióra jellemző R² érték 0,9011), így azok jól ritkíthatók. A normálmagasság változás abszolút értékben 0,07 mm, ami kétszerese a síkvidéki vonalon tapasztalt eltérésnek. A számított geopotenciál különbségek változása hasonló mértékű. A vonal két végpontjában mért "g" értékkel végzett számításnál a potenciál különbség -70 mGal·m értékkel változott meg a teljes szintezési vonalon.

6. Hegyvidéki vonalon végzett kísérleti mérések

A hivatkozott BME tanulmány alapján hegyvidéki jellegűnek tekintjük azt a szintezési vonalat, amelynek tengerszint feletti magassága 350–900 m és a szakasz végpontjainak magasságkülönbsége 60–100 m közötti intervallumba esik. A vizsgálatokhoz két területet választottunk ki. Az elsőt (Mátraháza–Mátrafüred) olyan útszakaszon telepítettük, ahol a vonal alig keresztezett Bouguer-anomália izovonalakat (maximális anomália különbség 10 mGal), egy másikat pedig Bükkszentkereszt és Kisgyőr között jelöltünk ki, ahol a Bouguer-anomália változása a szintezési vonalon 22 mGal. A Mátraháza-Mátrafüred vonal vázlatát az 5. ábrán mutatjuk be, a számításokhoz felhasznált vonalpontok adatait az 5. táb*lázatban* állítottuk össze. A vonal legnagyobb magasság különbsége 366 m, a kezdő- és végpont magasság különbsége 303 m. Az interpoláláshoz felhasznált pontok száma: 2615. Feltűnő a vonal nyugati oldalán található nagyszámú adat, ami a 70-80-as években - nyersanyag kutatási célból végzett részletes geofizikai felmérésnek köszönhető.

A Bükkszentkereszt–Kisgyőr vonalat korábbi években végzett graviméteres mérések alapján jelöltük ki. A vonal vázlatát és adatait a *6. ábra* és *6. táblázat* tartalmazza. Megjegyezzük, hogy mindkét kiválasztott hegyvidéki vonal körzetében a fellelhető pontok átlagos területi sűrűsége jóval meghaladja az országos átlagot, ami annak köszönhető, hogy az északi hegyvidéken a 60–70-es években számos nyersanyagkutatási célú graviméteres mérést végeztek. A kezdő- és végpont magasság különbsége 385 méter, a legnagyobb különbség 467 méter. Az interpoláló eljáráshoz az országos gravimetriai adatbázisból 5589 pontot vettünk át.

Az első számítással ismét az országos gravitációs adatbázisnak az 5. és 6. *ábrán* látható pontjaiból a szintezési vonalra interpolált "g" értékek hatását vizsgáltuk a két hegyvidéki vonal geopotenciális értékeire és normálmagasság különbségeire. Az alkalmazott eljárás most is hasonló volt mint a sík- és dombvidéki vonalak esetében. A Mátraháza–Mátrafüred teljes vonalára a normálmagasságok K₁ javításának értéke 2,89 mm, a mért értékekből számított K₂ javítás értéke – 15,04 mm, amely tizenötszöröse a dombvidéki vonal K₂ értékének a megnövekedett magasságkülönbség miatt (7. táblázat). Ezek az értékek a második hegyvidéki vonal esetében 1,42 mm és – 22,05 mm voltak (8. táblázat).

Az interpolált Faye-anomáliák és azoknak a mért értékektől való eltérései a 7. és 8. *ábrákon* láthatók.

Az interpoláció becsült középhibája külön a két hegyvidéki vonalra (az összes pontot figyelembe véve) $\pm 0,49$ és $\pm 1,52$ mGal, ami a vártnak megfelelően alakult, mivel természetesen a

 $(\mathbf{0})$

változatosabb Bouguer-anomáliák rosszabbul is interpolálhatók. Az interpolációval számított Faye-anomáliákkal most is elvégeztük a szintezési vonal pontjai közötti geopotenciális értékek és normálmagasság különbségek meghatározását. A teljes normálmagasság különbség 0,08 illetve 0,61 mm-rel tér el a ténylegesen mért "g" értékekkel végzett számításból nyert eredménytől, vagyis a K₂ javítás kb. 0,5 – 3%-kal változott meg az interpoláció következtében a két hegyvidéki területen a teljes vonalat tekintve. Viszont a 8. táblázatból kitűnik, hogy a K₂ javítás maximális értéke két nagy magasságkülönbséggel rendelkező szakaszon még az 5 mm-t is meghaladta.

Megvizsgáltuk továbbá, hogyan befolyásolja a vonalon mért graviméteres pontok számának csökkentése az ismertetett két hegyvidéki szintezési vonal pontjainak geopotenciális értékeit és normálmagasságait. A Bükki vonalon a graviméteres mérések 1780 méteres átlagos ponttávolságra történt ritkítása következtében a teljes vonalon a K₂ értéke 0,26 mm-rel, azaz kb.

5. ábra A Mátraháza–Mátrafüred hegyvidéki vonal

6. ábra A Bükkszentkereszt-Kisgyőr hegyvidéki vonal

2010/1 (62)

1%-kal csökkent. A Mátrai vonalon hasonló, 0,29 mm-es eltérést adott a pontok 950 méteres átlagos távolságra való ritkítása a teljes vonalon a K_2 javítás tekintetében. A normálmagasság változás abszolút értékben 0,3 mm volt mindkét vonalon, de egyes szakaszokon a változás meghaladta a 0,5 mm-t is. A számított geopotenciál különbségek változása ennek megfelelő mértékű. A "g" értékek ritkítása miatt a potenciál különbség 260 mGal·m értékű változását tapasztaltuk a teljes szintezési vonalon.

A Mátraháza-Mátrafüred vonallal kapcsolatban egy további vizsgálatot végeztünk: az eredeti számításokhoz felhasznált pontok számát (a terület változatlanul hagyásával) a "select" programmal [ami a GRAVSOFT programcsomag része (*Tscherning* et al, 1992)], felére csökkentve az előző területeken végzett számításokhoz hason-

7. ábra Az interpolált Faye-anomália értékek eltérése a mérésekből számítottaktól a Mátraháza–Mátrafüred vonalon

 ábra Az interpolált Faye-anomália értékek eltérése a mérésekből számítottaktól a Bükkszentkereszt–Kisgyőr vonalon

GEODÉZIA ÉS KARTOGRÁFIA

9. ábra A kétféle adatszámmal végzett interpolálással nyert Faye-anomáliák szórásának eltérése a Mátraháza–Mátrafüred vonalon

lóan ismét elvégeztük az interpolált Faye-anomáliák meghatározását. A kétféle adatmennyiséggel végzett számításokból a Faye-anomáliák szórására vonatkozó adatokat a *9. ábrán* tüntettük fel.

9. Eredmények, következtetések

A síkvidéki jellegű szintezési vonalakon végzendő graviméteres mérések sűrűségére vonatkozóan arra a megállapításra jutottunk, hogy a hivatkozott BME tanulmányban foglaltaknak megfelelően elegendő a 2-3 km/pont mérése akkor, ha a nehézségi gyorsulási értékek változását alapvetően a magasságváltozások, illetve a földrajzi szélesség változása okozza. Abban az esetben, ha a "g" változások alapvetően mélységi hatásból származnak (olyan belső tömegegyenetlenségek, amelyek nem járnak együtt a felszíni domborzat jelentős változásaival), akkor a mérések számának tervezésénél figyelembe kell venni az országos Faye-anomália izovonalas térképet, mert az adott szintezési vonalat keresztező izovonalak sűrűsége meghatározó lehet mind a mérendő pontok helyének, mind azok számának tervezésénél.

A dombvidéki területen mért vonal esetében a számított K_2 javítások az interpoláció miatt már sokkal jelentősebb változást eredményeztek a síkvidéki vonalhoz képest. Ha nem mérnénk "g" értékeket, akkor az interpoláció miatt a teljes magasságkülönbség 0,28 mm-es hibáját okoznánk a mindössze 7 km-es szintezési vonalon, ami véleményünk szerint nem elfogadható. Jobb eredményeket kaptunk akkor, ha a tényleges "g" méréseket használva a pontsűrűséget csökkentettük. Ez esetben az 1,5 km-es pontsűrűségre történt ritkítás még egyetlen esetben sem okozta a normál magasságok különbségeinek 0,02 mm-t meghaladó változását, illetve a teljes vonal esetében 0,06 mm-es eltérés adódott, ami elfogadható. Ha a vonal jellemző magassági és vízszintes töréspontjain, illetve a Faye-anomália szelvény jellegzetes pontjain végzünk méréseket, akkor dombvidéken még az átlagosan 3 km-es mérési pontsűrűség is elfogadható.

A Mátraháza–Mátrafüred hegyvidéki vonalnál a normálmagasságok interpoláció miatti változásai szakaszonként maximálisan 0,03 mm-es értéket eredményeztek, illetve a teljes vonal magasságkülönbsége 0,08 mm-t változott, ami már túllépi a BME tanulmányában jelzett még elfogadható néhány század mm-t. A bükki vonalon három magasságkülönbség változása is meghaladta a 0,1 mm-t az interpoláció miatt, illetve a teljes vonalra 0,61 mm-t. Ebből azt a következtetést vonhatjuk le, hogy az interpolációval elérhető pontosság nagymértékben függ a konkrét viszonyoktól, úgymint a graviméteres pontok sűrűségétől, a szintezési vonal helyzetétől és attól, hogy az adott területen mennyire jól interpolálhatók Bougueranomáliák. A "g" mérések szükséges pontsűrűségét is ezekhez a tényezőkhöz kell igazítanunk, mert például a mátrai vonalon a "g" mérések 1 km-es pontsűrűségre történt ritkításával elkövetett közel 0,3 mm-es hiba a szintezések pontosságát tekintve már nem kielégítő. Idézzük a vonatkozó BME tanulmány hegyvidéki területen szükséges pontsűrűségre vonatkozó megállapítását: "Ennek alapján megállapítható, hogy ilyen jellegű hegyi területen az 1 km átlagos pontsűrűség teljesen indokolt, és ezt még inkább felső határnak is lehetne tekinteni." Úgy gondoljuk, hogy a két hegyvidéki vonalon végzett vizsgálataink is megerősítik ezt a megállapítást.

Az országos gravimetriai adatbázis szintezési vonalakra interpolált "g" értékek előállításához történő alkalmazásánál több szempontot is figyelembe kell venni. Ezek közül a legfontosabb az aktuális területen rendelkezésre álló adatok száma. Erre utal a kérdéssel kapcsolatos vizsgálati eredményünk (*9. ábra*) is a Mátraháza–Mátrafüred vonalon, amelynek környezetében pedig az országos átlagnál lényegesen nagyobb a mért gravimetriai pontok száma. A sűrűnek mondott magyarországi felmértség ellenére mintegy száz olyan hely van hazánkban, ahol 10-15 km²-es területen egyetlen mért graviméteres pont sincs!

Az adatbázis adataival végzendő interpoláló módszer alkalmazásánál az MGH-80, vagy az MGH-2000 megfelelő "g" értékeit kell használni (Csapó 2008B).

A dolgozatban ismertetett munkák ugyan a matematikai módszerrel végzett interpolálásra vonatkoztak, röviden említést kell tennünk a hivatkozott irodalomban (Papp et al., 2009) ismertetett módszerről. A prizmamodell alkalmazásának két fontos feltétele van. Az egyik a megfelelő felbontású DTM, a másik a sűrűség viszonyok kellő ismerete a szintezési vonalak területén. Az ismertetett munkában a szerzők – nagyszámú graviméteres mérés alapján - 20×20 méteres felbontású DTM-et használtak. Országos méretekben viszont a jelenleg ismert legnagyobb felbontású az MH TÁTI által 1992-ben kifejlesztett DDM-10, illetve a FÖMI DDM-5 modellje (Winkler 2003). Szóba jöhet még (a szabadon hozzáférhető modellek közül) az SRTM adatbázis alapján előállított 3 szögmásodperces domborzati modell, azonban éppen a kritikusnak tekinthető hegyvidéki területeken a magassági hibák több métert is elérhetnek (a domborzati felvételezést radarrendszerrel végezték). Véleményünk szerint a fizikai alapú interpolációs módszer reális alkalmazási lehetőségének megítéléséhez szükség lenne annak országos méretű alkalmazhatóságára vonatkozó vizsgálatok elvégzésére. Tekintettel egyrészt arra, hogy az EOMA korszerűsítésének költségeiben a graviméteres mérések meglehetősen csekély súllyal szerepelnek, másrészt a geoid hazai felület darabjának pontosításához minden mért adat hozzájárul, ezért a szintezési vonalakon a kellő számban végzett graviméteres méréseket továbbra is elengedhetetlennek tartjuk.

Köszönetnyilvánítás

A cikkben ismertetett munkák elvégzését az OT-KA 72806 számú pályázatának támogatása tette lehetővé.

Relation between the density of gravimetric measurements along a levelling line and the geopotential numbers Csapó, G.-Földváry, L.-Tóth, Gy.

Summary

In the study methods for deriving gravimetric data to determine the geopotential number of levelling benchmarks are discussed. The optimal density of the gravimetric measurements have been investigated under different topographic conditions, i.e.

considering plane, hilly and mountainous areas, and how rarefying of the data affects the determination of the geopotential number and of the metric height values has been analyzed.

Based on the Hungarian gravimetric data base the "g" values have been interpolated in order to complement the sparse measurements. Interpolation errors have been determined at identical stations by comparing the measured and the interpolated Faye-anomalies. According to the results in the case of hilly regions 1,5–3 km for the density of the "g" measurements is sufficient, however at mountainous regions in some cases even the 1 km density was not found to be eligible to match the accuracy requirements for the normal height. Finally the feasibility of the prism modelling (using a DEM and a density model) for interpolating gravity data for Hungary has been discussed considering the accuracy of the available models. According to these investigations the earlier instructions for the density of the gravity measurements were found to be necessary.

IRODALOM

- BME Felsőgeodézia Tanszék, 1968: A kéregmozgási szintezési hálózatok gravitációs méréseinek egyes gyakorlati kérdései. (Kutatási jelentés). BME és ELGI adattár.
- Csapó Géza 2000: Magyarország új gravimetriai alaphálózata (MGH-2000). Geodézia és Kartográfia, 52. évf., 2000/8
- Csapó Géza 2008A: Az Egységes Országos Magassági Alaphálózat (EOMA) graviméteres mérései. Magyar Geofizika, 49., 4., pp.: 138-142.
- Csapó Géza 2008B: A magyarországi gravimetriai alaphálózatok vonatkoztatási rendszereinek összehasonlítása. Magyar Geofizika, 49., 3., pp.: 105-110
- ÉKME II. Geodézia tanszéke 1962: Normálmagasságok számítása, ÁKFT kutatási beszámoló, Budapest.
- MÉM Országos Földügyi és Térképészeti Hivatala, 1975: Szabályzat a kéregmozgási szintezési hálózat létesítéséről. (FÖMI és ELGI adattár).
- Papp, G., Szeghy, E., Benedek, J. 2009: The determination of potential difference by the join application of measured and synthetical gravity data: a case study in Hungary. Journal of Geodesy, Vol.83, No.6., pp.: 509-521
- Sárhidai Attila 1993: Különböző eljárások összehasonlítása Faye-anomáliák interpolálására. (FOMI számára készült tanulmány az OMFB

2010/1 (62)

GEODÉZIA ÉS KARTOGRÁFIA

2010.01.18. 8:58:37

۲

93-950003 számú szerződés keretében FÖMI és ELGI adattár).

- Sárhidai Attila 1994: Magyarországi Faye-anomáliák interpolálása. (FÖMI számára készült tanulmány az OMFB 93-950003 számú szerződés keretében: FÖMI és ELGI adattár).
- Tscherning, C.C., R.Forsberg and P.Knudsen: The GRAVSOFT package for geoid determination. Proc. 1. Continental Workshop on

the Geoid in Europe, Prague, May 1992, pp. 327–334, Research Institute of Geodesy, Topography and Cartography, Prague, 1992.

Winkler P. 2003: Magyarország digitális ortofotó programja (MADOP) és nagyfelbontású digitális domborzatmdell (DDM) az ország teljes területére. Geodézia és Katográfia, 55., 12., pp.: 3-10.

TÁBLÁZATOK

1. táblázat

М	egjegyzés:	a "g"	' értékekből	980000	mGal-t	levontunk
---	------------	-------	--------------	--------	--------	-----------

nont azéma	φ	λ	H _(Balti)	g (MGH-80)	s
pont szama	(fok-perc-r	násodperc)	(méter)	(mGal)	(km)
4274	471013	194800	103.245	792.773	
1	470902	194735	103.560	792.342	- 2.193
2	470847	194725	104.683	791.870	- 0.463
3	470826	194727	106.838	791.560	- 0.649
4	470813	194721	108.462	791.159	- 0.401
5	470758	194720	110.198	790.862	- 0.463
6	470740	194719	111.398	790.758	- 0.556
7	470721	194715	112.412	790.641	-0.587
8	470706	194715	111.541	791.023	- 0.463
9	470649	194713	112.250	790.836	- 0.525
10	470627	194712	113.943	790.606	- 0.679
11	470613	194709	115.391	790.227	- 0.432
12	470558	194706	115.776	790.130	- 0.463
13	470544	194710	115.539	790.374	- 0.432
14	470526	194701	115.850	789.909	- 0.556
15	470509	194658	115.407	789.672	- 0.525
16	470454	194657	114.196	789.618	- 0.463
17	470435	194652	114.323	788.911	- 0.587
18	470419	194653	114.506	788.311	- 0.494
19	470400	194650	114.852	787.244	- 0.587
20	470340	194652	115.607	786.347	- 0.618

2. táblázat

()

	g	H _{AB normál}	K ₁	$\Delta H_{AB normál}$	γ	g–γ (Faye)	K ₂	$K_1 + K_2$	ΔK_{AB}
	(kGal)	(méter)	(mm)	(méter)	(kGal)	(mGal)	(mm)	(mm)	(kGal)
4274	0.980792773				0.980790028	2.745			
1	0.980792342	103.4025	0.19	0.315	0.980788151	4.191	0.00	0.19	0.3089
2	0.980791870	104.1215	0.04	1.123	0.980787428	4.442	0.00	0.04	1.1014
3	0.980791560	105.7605	0.06	2.155	0.980786236	5.324	0.01	0.07	2.1136
4	0.980791159	107.6500	0.04	1.624	0.980785409	5.750	0.01	0.05	1.5928
5	0.980790862	109.3300	0.04	1.736	0.980784497	6.365	0.01	0.05	1.7027
6	0.980790758	110.7980	0.05	1.200	0.980783675	7.083	0.01	0.06	1.1769
7	0.980790641	111.9050	0.05	1.014	0.980782886	7.755	0.01	0.06	0.9945
8	0.980791023	111.9765	0.04	- 0.871	0.980782.778	8.245	-0.01	0.04	- 0.8543
9	0.980790836	111.8955	0.05	0.709	0.980782133	8.703	0.01	0.05	0.6954
10	0.980790606	113.0965	0.06	1.693	0.980781059	9.547	0.02	0.08	1.6605
11	0.980790227	114.6670	0.04	1.448	0.980780261	9.966	0.01	0.06	1.4202
12	0.980790130	115.5835	0.04	0.385	0.980779766	10.364	0	0.05	0.3776
13	0.980790374	115.6575	0.04	- 0.237	0.980779488	10.886	0	0.04	- 0.2324
14	0.980789909	115.6945	0.05	0.311	0.980778940	10.969	0	0.06	03050
15	0.980789672	115.6285	0.05	- 0.443	0.980778651	11.021	0	0.05	- 0.4345
16	0.980789618	114.8015	0.04	- 1.211	0.980778649	10.969	-0.01	0.03	- 1.1877
17	0.980788911	114.2595	0.06	0.127	0.980778133	10.778	0	0.06	0.1246
18	0.980788311	114.4145	0.05	0.183	0.980777675	10.636	0	0.05	0.1795
19	0.980787244	114.6790	0.06	0.346	0.980777092	10.152	0	0.06	0.3394
20	0.980786347	115.2295	0.06	0.755	0.980776357	9.990	0.01	0.07	0.7405
Σ			1.12	12.362			0.08	1.20	12.454

()

2010/1 (62)

()

CSAPÓ-FÖLDVÁRY-TÓTH: Összefüggés a szintezési vonalakon végzett graviméteres mérések sűrűsége ...

pont száma	φ (fok-perc-r	λ násodperc)	H _(Balti) (méter)	g _(MGH-80) (mGal)	s _m (km)
1	473439	193150	154.065	815.707	
2	473431	193203	153.641	815.559	- 0.247
3	473416	193149	164.191	812.419	- 0.463
4	473404	193124	151.474	815.053	- 0.371
5	473359	193108	157.177	813.818	- 0.154
6	473354	193049	159.436	813.550	- 0.154
7	473344	193023	156.190	814.799	- 0.309
8	473352	193000	160.060	814.448	0.247
9	473401	192938	162.430	814.476	0.278
10	473408	192913	163.660	814.739	0.216
11	473412	192840	170.760	813.782	0.124
12	473405	192805	182.670	811.922	- 0.216
13	473357	192746	190.430	810.533	- 0.247
14	473354	192726	216.010	805.245	- 0.093
15	473401	192702	237.000	801.131	0.216
16	473410	192644	253.493	797.541	0.278
17	473420	192625	262.897	795.653	0.309
18	473432	192557	273.909	793.727	0.371
19	473438	192534	263.852	796.211	0.185
20	473438	192510	235.091	802.711	0.000

3. táblázat

4. táblázat

۲

pont száma	g (kGal)	H _{AB normál} (méter)	K ₁ (mm)	$\Delta H_{AB normál}$ (méter)	γ (kGal)	g-γ (Faye) (mGal)	K ₂ (mm)	$K_1 + K_2$ (mm)	ΔK_{AB} (kGal)
1	0.980815707				0.980811068	4.639			
2	0.980815559	153.8530	0.03	- 0.424	0.980810999	4.561	0	0.03	- 0.4159
3	0.980812419	158.9160	0.06	10.550	0.980807366	5.053	0.05	0.11	10.3476
4	0.980815053	157.8325	0.05	- 12.717	0.980810992	4.061	- 0.06	- 0.01	- 12.4730
5	0.980813818	154.3255	0.02	5.703	0.980809106	4.713	0.03	0.05	5.5936
6	0.980813550	158.3065	0.02	2.259	0.980808283	5.267	0.01	0.03	2.2157
7	0.980814799	157.8130	0.04	- 3.246	0.980809035	5.764	-0.02	0.02	- 3.1837
8	0.980814448	158.1250	- 0.03	3.870	0.980808040	6.407	0.02	- 0.01	3.7958
9	0.980814477	161.2450	-0.04	2.370	0.980807534	6.943	0.02	-0.02	2.3245
10	0.980814739	163.0450	- 0.03	1.230	0.980807329	7.410	0.01	-0.02	1.2064
11	0.980813782	167.2100	-0.02	7.100	0.980805237	8.545	0.06	0.04	6.9638
12	0.980811922	176.7150	0.03	11.910	0.980801384	10.537	0.12	0.15	11.6815
13	0.980810533	186.5500	0.04	7.760	0.980798788	11.745	0.09	0.13	7.6111
14	0.980805245	203.2200	0.02	25.580	0.980790815	14.430	0.34	0.36	25.0891
15	0.980801131	226.5050	-0.04	20.990	0.980784509	16.622	0.33	0.29	20.5871
16	0.980797541	245.2465	- 0.06	16.493	0.980779642	17.900	0.29	0.23	16.1763
17	0.980795653	258.1950	-0.07	9.404	0.980776988	18.664	0.18	0.11	9.2234
18	0.980793727	268.4030	-0.08	11.012	0.980773889	19.838	0.22	0.13	10.8005
19	0.980796211	268.8805	-0.04	- 10.057	0.980777144	19.067	- 0.20	- 0.24	- 9.8639
20	0.980802711	249.4715	0	-28.761	0.980786025	16.686	- 0.52	- 0.52	-28.2088
Σ			- 0.10	81.026			0.95	0.86	79.4710

2010/1 (62)

GEODÉZIA ÉS KARTOGRÁFIA

۲

CSAPÓ-FÖLDVÁRY-TÓTH: Összefüggés a szintezési vonalakon végzett graviméteres mérések sűrűsége ...

pont	φ λ		H _(Balti)	g (MGH-80)	sm
száma	(fok-perc-r	násodperc)	(méter)	(mGal)	(km)
1	475300	195847	642.720	755.471	
2	475243	195846	638.100	754.535	- 0.525
3	475238	195904	649.770	749.866	- 0.154
4	475234	195911	664.050	746.556	- 0.124
5	475223	195854	688.410	740.549	-0.340
6	475206	195847	706.350	735.962	-0.525
7	475158	195823	681.630	740.858	-0.247
8	475151	195825	672.210	742.584	- 0.216
9	475136	195812	669.250	743.036	- 0.463
10	475121	195817	641.980	748.681	- 0.463
11	475109	195807	618.370	754.153	- 0.371
12	475108	195740	587.500	759.858	- 0.031
13	475055	195748	563.740	765.470	-0.401
14	475045	195733	519.200	774.896	- 0.309
15	475030	195746	490.170	780.629	- 0.463
16	475021	195747	440.020	789.906	-0.278
17	475012	195755	414.470	794.656	-0.278
18	475011	195800	387.190	800.225	- 0.031
19	474959	195814	362.570	804.802	-0.371
20	474945	195821	339.530	809.772	- 0.432

5. táblázat

6. táblázat

pont száma	φ (fok)	λ (fok)	H _(Balti) (méter)	g _(MGH-80) (mGal)	s _m (km)
12499	48.0686	20.6375	563.700	808.154	
12500	48.0689	20.6494	645.370	791.694	0.033
12501	48.0706	20.6589	583.990	803.221	0.189
12502	48.0703	20.6672	526.250	814.406	- 0.033
12503	48.0650	20.6714	462.830	826.312	-0.589
12504	48.0656	20.6758	414.340	836.155	0.067
12505	48.0639	20.6842	366.290	845.428	- 0.189
12506	48.0608	20.6911	379.340	843.148	-0.345
12507	48.0578	20.6972	355.650	848.106	-0.334
12508	48.0539	20.7022	333.040	852.423	-0.434
12509	48.0500	20.7033	314.050	855.358	- 0.434
12510	48.0461	20.7069	294.870	858.682	-0.434
12511	48.0422	20.7089	271.580	861.994	-0.434
12512	48.0375	20.7069	235.050	866.713	- 0.523
12531	48.0339	20.7103	215.040	869.698	-0.400
12532	48.0297	20.7144	217.530	868.478	-0.467
12533	48.0256	20.7150	209.260	870.536	-0.456
12534	48.0206	20.7147	185.180	874.919	- 0.556
12535	48.0161	20.7144	186.970	872.437	- 0.500
12536	48.0125	20.7094	178.680	872.517	- 0.400

۲

2010/1 (62)

۲

2010.01.18. 8:58:37

CSAPÓ-FÖLDVÁRY-TÓTH: Összefüggés a szintezési vonalakon végzett graviméteres mérések sűrűsége ...

۲

7.	táhlázat
· •	inoinzai

pont száma	g (kGal)	H _{AB normál} (méter)	K_1 (mm)	$\Delta H_{AB \text{ normál}}$ (méter)	g (kGal)	g-g (Faye) (mGal)	K_2 (mm)	$K_1 + K_2$	ΔK_{AB} (kGal)
1	0.980755471	(1110101)	()		0.980687742	67.729	()	()	(11041)
2	0.980754535	640.410	0.28	- 4.62	0.980688743	65.792	- 0.31	- 0.04	- 4.5311
3	0.980749866	643.935	0.08	11.67	0.980685015	64.851	0.78	0.86	11.4454
4	0.980746556	656.910	0.07	14.28	0.980680505	66.051	0.95	1.02	14.0051
5	0.98040549	676.230	0.19	24.36	0.980672708	67.841	1.66	1.85	23.8909
6	0.980735962	697.380	0.30	17.94	0.980666744	69.218	1.25	1.56	17.5944
7	0.980740858	693.990	0.14	- 24.72	0.980674177	66.681	- 1.71	- 1.57	- 24.2439
8	0.980742584	676.920	0.12	- 9.42	0.980676910	65.674	-0.64	- 0.51	- 9.2386
9	0.980743036	670.730	0.26	- 2.96	0.980677449	65.587	-0.20	0.06	-2.9030
10	0.980748681	655.615	0.25	- 27.27	0.980685494	63.187	- 1.79	- 1.54	- 26.7449
11	0.980754153	630.175	0.19	- 23.61	0.980692484	61.669	- 1.50	- 1.31	- 23.1555
12	0.980759858	602.935	0.02	- 30.87	0.980701990	57.868	-1.88	- 1.87	- 30.2760
13	0.980765470	575.620	0.19	- 23.76	0.980709001	56.469	- 1.38	- 1.19	- 23.3029
14	0.980774896	541.470	0.14	- 44.54	0.980722504	52.392	-2.47	- 2.33	- 43.6835
15	0.980780629	504.685	0.19	- 29.03	0.980731092	49.537	- 1.51	- 1.31	- 28.4720
16	0.980789906	465.095	0.11	- 50.15	0.980746352	43.554	-2.38	-2.27	- 49.1864
17	0.980794656	427.245	0.10	- 25.55	0.980754016	40.640	- 1.10	- 1.00	- 25.0592
18	0.980800225	400.830	0.01	- 27.28	0.980762414	37.811	- 1.09	- 1.08	- 26.7562
19	0.980804802	374.880	0.12	- 24.62	0.980769716	35.086	- 0.91	-0.80	- 24.1474
20	0.980809772	351.050	0.13	- 23.04	0.980776479	33.293	-0.80	-0.68	- 22.5978
Σ			2.89	- 303.19			- 15.04	- 12.15	-297.3625

8. táblázat

۲

pont száma	g (kGal)	H _{AB normál} (méter)	K ₁ (mm)	ΔH _{AB normál} (méter)	γ (kGal)	g-γ (Faye) (mGal)	K ₂ (mm)	$K_1 + K_2$ (mm)	ΔK_{AB} (kGal)
12499	0.980808154				0.980728819	79.335			
12500	0.980791694	604.535	- 0.02	81.670	0.980703629	88.065	6.97	6.95	80.1019
12501	0.980803221	614.680	- 0.10	- 61.380	0.980722734	80.487	- 5.27	- 5.37	- 60.2013
12502	0.980814406	555.120	0.02	- 57.740	0.980740536	73.870	- 4.54	- 4.53	- 56.6319
12503	0.980826312	494.540	0.24	- 63.420	0.980759641	66.671	-4.54	- 4.30	- 62.2036
12504	0.980836155	438.585	-0.02	- 48.490	0.980774667	61.488	- 3.17	- 3.19	- 47.5605
12505	0.980845428	390.315	0.06	- 48.050	0.980789350	56.078	-2.88	- 2.82	- 47.1294
12506	0.980843148	372.815	0.11	13.050	0.980785042	58.106	0.76	0.87	12.8000
12507	0.980848106	367.495	0.10	- 23.690	0.980792087	56.019	- 1.38	- 1.28	- 23.2362
12508	0.980852423	344.345	0.12	- 22.610	0.980798717	53.706	- 1.26	- 1.14	- 22.1770
12509	0.980855358	323.545	0.12	- 18.990	0.980804230	51.128	- 1.01	- 0.90	- 18.6264
12510	0.980858682	304.460	0.11	- 19.180	0.980809801	48.881	-0.98	-0.87	- 18.8128
12511	0.980861994	283.225	0.10	- 23.290	0.980816641	45.353	- 1.12	- 1.02	- 22.8442
12512	0.980866713	253.315	0.11	- 36.530	0.980827497	39.216	- 1.57	- 1.46	- 35.8310
12531	0.980869698	225.045	0.07	- 20.010	0.980833352	36.346	-0.77	- 0.70	- 19.6272
12532	0.980868478	216.285	0.08	2.490	0.980832205	36.273	0.09	0.18	2.4424
12533	0.980870536	213.395	0.08	- 8.270	0.980834390	36.146	- 0.31	- 0.22	- 8.1118
12534	0.980874919	197.220	0.09	- 24.080	0.980841375	33.544	- 0.86	- 0.76	- 23.6194
12535	0.980872437	186.075	0.08	1.790	0.980840417	32.020	0.06	0.14	1.7558
12536	0.980872517	182.825	0.06	- 8.290	0.980842653	29.864	- 0.26	- 0.20	- 8.1314
Σ			1.42	- 385.020			- 22.05	- 20.63	- 377.6442

2010/1 (62)

GEODÉZIA ÉS KARTOGRÁFIA

۲