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ABSTRACT 

Water plays an important role in the ecosystems of the earth and even more important 

in the swamplands. This study builds a workflow that can be programmatically applied in 

Sentinel-2 datasets to monitor water surface area in the Brazilian Pantanal. Also, the state of 

the hydrography of the Nhecolândia region between the years of 2016 and 2022 was assessed 

to verify the applicability of the method. By using water extraction indexes coupled with Otsu’s 

thresholding algorithm, the study appraised the applicability of five different indexes: 

normalized difference water index (NDWI), modified normalized difference water index 

(MNDWI), new water index (NWI), Sentinel-2 water index (SWI) and automated water 

extraction index for shadow areas (AWEIsh). The results show that for the target area the 

AWEIsh index had the best accuracy, with a kappa index of 0,87, and it was applied to the 

entirety of the datasets, resulting in 14 water extraction maps. From these, it was possible to 

observe a steady decrease in water surface area between the years of 2016 and 2022 and most 

importantly a sharp decrease in the year of 2020. From water surface change calculations, the 

peak water surface area of the region measured was 238 km2 while the lowest was 4 km2. The 

surface water area during the wet season suffered a decrease of 83% in the spam of the study 

and, on average, a decrease of 75% between the wet and dry season each year. 

 

Keywords: Pantanal, remote sensing, surface water detection, spectral index, time-series, 

climate-change, Sentinel-2 



1 

 

1. INTRODUCTION 

Water plays an essential role in the life of most of the living creatures in our planet. In 

the last few years awareness about this resource availability has been raised dramatically, 

mostly in the context of climate changes related to global warming (Gleick, 1993). Therefore, 

monitoring and assessing water reservoirs has become an even more important subject.  

There is around 1386 million km3 of water available on Earth, from this total only 

0,0008% is available in swamplands (Shiklomanov, 1993). Even though the volume of water 

in swamplands compared to the total doesn’t seem expressive, these reservoirs deeply affect 

the communities and biota located nearby them. 

The Brazilian Pantanal is one of the largest wetlands of the planet and is recognized by 

UNESCO as a World Biosphere Reserve due to its complex and diverse natural characteristics. 

Due to its semi-arid nature, the area is highly vulnerable to severe floods and droughts (Marengo 

et al., 2016). Therefore, tools to analyze and monitor climate change impacts in the region are 

becoming increasingly important. 

Since the 1970s and the launch of the first remote sensing satellite missions, a new tool 

was available for water reservoirs assessment. In the following decades, further improved 

sensors were launched, and more sophisticated methods are available. Nowadays, remote 

sensing techniques represent an easily accessible and cheaper technique than in situ 

measurements of water surfaces (Bijeesh-Narasimhamurthy, 2020). Due to the restricted access 

and human occupation of the area, the employment of remote sensing methods at the region is 

imperative.  

This work aims to provide a workflow that allows the monitoring of the surface water 

at the Brazilian Pantanal. For this, the present study analyzes the viability of extracting water 

surfaces using water indexes in multispectral satellite images. This workflow was developed in 

a manner that it could be programmatically applied and an automation without human 

interaction could be produced from it. 

Moreover, this work also seeks to assess the changes in hydrography in the Pantanal 

sub-region Nhecolândia, highlighting how the variances of the climate have been influencing 

the region in the latest years. Lastly, this project applies datasets from the Sentinel-2 satellite 

which represents a new open-source sensor available to the public with higher spatial, temporal 

and spectral resolution than others satellites more broadly used for water sensing, such as the 

Landsat 5 TM, in order to spread the capabilities of this sensor.  
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2. LITERATURE REVIEW AND CONCEPTUAL BACKGROUND 

2.1. Remote Sensing 

Remote sensing is the science of acquiring, processing and interpreting data from sensor 

systems that digitally record the interaction between electromagnetic energy and matter. The 

interaction between energy and matter can be observed in the form of light, heat and 

microwaves and allows us to assess the physical properties of the object (Sabins- Ellis, 2020). 

There are two main types of remote sensing systems: passive and active. Passive 

systems measure reflected solar radiation, or absorbed and reemitted solar radiation. Active 

systems, however, emit radiation from their own energy source towards the object and detect 

the radiation reflected from it (Dong-Chen, 2017). 

When electromagnetic energy interacts with matter its properties can change, such as 

intensity, direction, wavelength, polarization and phase. The detection of these changes allows 

us to determine the characteristics of the matter. Five possible processes happen during these 

interactions (Figure 1): (a) transmission, the energy passes through the substance; (b) 

absorption, the energy is absorbed, mostly heating the matter; (c) emission, energy is first 

absorbed and then discharged; (d) scattering, the energy is deflected in all directions; (e) 

reflection, the energy is returned with equal angle and opposite direction to its incidence 

(Sabins-Ellis, 2020). 

 

 

Figure 1 - Diagram showing the types of interaction between incident energy and matter and 

how this interaction changes the energy properties such as intensity, direction, wavelength, 

polarization and phase (Sabins-Ellis, 2020). 
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2.1.1. Electromagnetic Radiation 

Electromagnetic radiation is the energy that moves with the speed of light (3x108 ms-1) 

in a harmonic wave pattern (Sabins-Ellis, 2020). This wave has the following properties (Figure 

2): wavelength (λ), the distance between successive peaks; frequency (ν), the number of times 

a cycle is repeated during a second; velocity (c), the speed at which the waves propagate at a 

certain direction, in this case the speed of light (Campbell-Wynne, 2011). These properties can 

be denoted by the following mathematical relation (Equation 1): 

 

c =  νλ (1) 

  

 

 

Figure 2 - Diagram with the components of an electromagnetic wave. Modified from Campbell-

Wynne, 2011. 

 

2.1.2. Electromagnetic Spectrum 

The electromagnetic spectrum is the continuum of energy that ranges from nanometers 

to meters in wavelength. All matter radiates a range of electromagnetic energy that occupies a 

specific range of wavelength (Sabins, 2007). This spectrum is divided in different regions 

according to the size of the wavelength (Figure 3; Table 1).  

The interaction of electromagnetic radiation with the Earth’s surface generates signals 

known as spectral signatures. The basis of remote sensing relies in the detection of these 

signatures and the identification of patterns related to objects that are being analyzed (Reddy-

Singh, 2018). 
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Figure 3 - Spectral bands in the electromagnetic spectrum and their respective wavelengths 

(Chuvieco, 2016). 

 

Table 1 - Electromagnetic regions and bands, their wavelength and applications in the remote 

sensing (Chuvieco, 2016; Reddy-Singh, 2018; Sabins-Ellis, 2020).  

Spectral Region 
Wavelength Application 

 Band 

Visible region 0.4-0.7 μm 
Visible spectral region where it 

can be detected by the human eye 

 Blue band 0.4 - 0.5 μm 
Land use, vegetation 

characteristics 

 Green band 0.5 - 0.6 μm Healthy vegetation analysis 

 Red band 0.6 - 0.7 μm Vegetation discrimination 

Infrared region 0.7 - 1000 μm 
Spectral region that exceeds the 

human eye sensitivity range 

 Near infrared band (NIR) 0.7 - 0.9 μm 
Biomass, delineation of water 

features 

 Shortwave infrared (SWIR) 0.9 - 3.0 μm 
Vegetation moisture, geological 

materials 

 Thermal Infrared (TIR) 3.0 - 5.0 μm Detection of hot targets 

 Thermal Infrared (TIR) 8.0 - 14.0 μm 
Detection of warm targets, land 

surface temperatures 

Microwave region 0.1 - 100 cm 

Very large wavelengths capable 

of penetrating through clouds and 

forest canopies 
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2.1.3. Satellite Imagery 

Remote sensing sensors can be mounted in a wide variety of platforms, such as cars, 

airplanes and backpacks. The use of satellites as remote sensing platforms, however, changed 

dramatically how remote sensing data could be used. Due to the orbital behavior of the satellite 

flight large areas could be detected with a fixed span of revisiting time, allowing for regional 

and temporal analysis. Another problem is related to the positioning of the satellites outside 

Earth’s atmosphere, part of the electromagnetic radiation is scattered by the atmosphere and is 

detected by the satellite directly (Chuvieco, 2016). This scattered energy adds up with the target 

response to the electromagnetic radiation and is considered to be the total radiance (Figure 4). 

To acquire the actual reflectance of the targeted object, the radiance must be corrected 

atmospherically and remove the radiance component from sensed data (Sabins-Ellis, 2020). 

 

 

Figure 4 - Diagram representing how the atmospheric scattering sums its signal to the target 

reflectance resulting in the total radiance (Sabins-Ellis, 2020). 
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2.2. Remote sensing for water bodies detection 

Water bodies significantly influence a region and have an irreplaceable role in global 

ecology and climate systems. Therefore, the monitoring of water bodies has gained increased 

importance in the latest years as a tool to analyze hydrological systems of a region. Contrary to 

in situ methods that usually are slow and resource intensive, remote sensing represents a cheap, 

macrographic and dynamic tool (Bijeesh, 2020). 

For the effective use of remote sensing in water reservoirs analysis, the extraction and 

identification of water bodies is an essential step. Extensive research has been performed on 

this subject and four mainly used techniques can be highlighted (Yang-Chen, 2017): object-

based image analysis (Castilla, 2003); pixel-based pattern recognition, supervised and 

unsupervised classification (Zhang et al., 2007); subpixel mapping with spectral mixture 

analysis (Xie et al., 2016); water indexes that enhances the water spectral difference (Mcfeeters, 

1996; Xu, 2006; Feyisa, 2014). 

Among these methods, water indexes have been widely used to extract water bodies, 

even in combination with other methods. One of the advantages of this method is the possibility 

to programmatically perform it, without the need of human interaction, which allows building 

a system to automatically extract the waterbodies from a series of images. Although this method 

is not flawless, each region benefits better from a specific index and their accuracy may fall 

dramatically in certain environments (Bijeesh, 2020). 

 

2.2.1. Optical properties of the water 

Water remote sensing is based on the properties highlighted by the interaction between 

electromagnetic radiation and water bodies. When entering a water medium, energy will 

undergo scattering and absorption interactions, although part of this energy will be reflected. 

The spectral response of the reflected energy from the water body surface is the main target of 

water remote sensing (Bukata, 2018). 

Water has a very distinct spectral signature in the electromagnetic spectrum, most of its 

reflectance is in the visible wavelength (Figure 5). Therefore, the infrared and near-infrared 

bands can be really useful for the identification and delineation of water bodies. It is even 

possible to determine the nature of the water body such as pure water and turbid water using its 

spectral signature (Bijeesh, 2020). 
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Figure 5 - Spectral reflectance signature for some of the most common materials observed in 

remote sensing. Modified from Chuvieco, 2016. 

 

2.2.2. Satellites/sensors 

Since the beginning of satellite missions at the 1970s, research of their use for water 

bodies detection have developed and with it the range of different sensors available. Nowadays 

there is a substantial range of open-source sensors capable of providing useful data for water 

analysis. Due to the water optical properties, any sensor capable of detecting the near-infrared 

region of the spectrum can be useful for water assessment, because one can easily apply a slice 

or threshold to the pixel values of the image to delineate water bodies (Bijeesh, 2020). 

Most of the multi-spectral and hyperspectral imaging sensors available are capable of 

detecting the near-infrared region of the spectrum. Therefore, there is a huge library of data 

available for water studies. These satellites, however, have different spatial, temporal, spectral 

and radiometric resolutions, which restricts or enables different types of study (Guo et al., 

2017). With the availability of data in higher spatial and temporal resolution in the recent years, 

new possibilities for detailed temporal analysis have arisen. 

 

2.2.3. Sentinel-2 

Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission launched by 

the Copernicus Programme under the European Space Agency (ESA). It is comprised by a 

constellation of two satellites, Sentinel-2A launched in 2015 and Sentinel-2B launched in 2017. 
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These satellites fly in the same orbit but are phased from each other by 180º, therefore the 

mission has a high temporal resolution of 5 days revisit frequency (Phiri et al., 2020). 

The multi-spectral sensor coupled to the Sentinel-2 satellites are capable of 

distinguishing 13 spectral bands: four bands at 10 meters resolution, six at 20 meters resolution 

and three bands at 60 meters resolution. Due to the open-source nature of the mission, its data 

can be freely accessed in the Copernicus Programme website in different processed forms: 

bottom of atmosphere, already atmospheric and geometrically corrected; and top of atmosphere, 

which still need to undergo through correction processes before they represent the true 

reflectance of the sensed target (Phiri et al., 2020). 
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3. METHODOLOGY 

The methodology was divided in five stages. The first stage was the literature review of 

the remote sensing field and its applications for water surface delineation, mainly inland water 

reservoirs and the application of indexes for their identification. The second step was the 

definition of an area of study and objective. This was followed by the acquisition and 

preprocessing of the images. Then, the analysis of different indexes was performed for the study 

area, followed by accuracy evaluation for each of them. A series of thematic maps were 

produced and analyzed to assess the hydrography of the study area and a water surface change 

tool was applied to measure the variations of the data between the years and seasons. 

 

3.1. Study area 

Recognized by UNESCO as a World Biosphere Reserve, the Pantanal covers 

approximately 140.000 km2 of alluvial depression and is located in the upstream basin of the 

Paraguay River, stretching from the Mato Grosso state in Brazil to northern Paraguay and 

eastern Bolivia (Figure 6). It is characterized by a large littoral zone with a myriad of shallow 

lakes, which are connected through a network of channels surrounded by patches of dry land 

(Junk et al., 2014). 

The region is a seasonally flooded alluvial plain fed by the Paraguay river and its 

tributaries. The flooding is heavily influenced by the precipitation pattern of the region and is 

marked by the rotation of two clearly defined season: a wet, from October to April; and a dry, 

from May to September. The hydrological cycle is divided in four different stages: rising 

(October to December), high water (January to March), decreasing (April to June) and low 

water (July to September) (da Silva-Silva, 1995). 

Due to the nature of this land and its poor access, there was historically a restricted 

human occupation and interference. This allied to a strong interaction between abiotic and biotic 

elements has resulted in a great diversity of landscapes and biosphere (Bazzo et al., 2012). 

Besides its importance, this system is currently threatened by a wide range of human activities 

and its consequences. In the last years the dry season has become increasingly more severe 

(Figure 7) with lesser days with rain throughout the year (Lázaro et al., 2020) and it is expected 

a decrease of up to 30% in the rainfall by the end of the century (Marengo et al., 2016). 
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Figure 6 - Distribution of major wetlands in South America, highlighted by a red arrow the 

region of Pantanal. Modified from Junk et al., 2014. 

 

The Nhecolândia sub-region is a 26.000 km2 area (Figure 8), that comprises roughly 

20% of the Pantanal, and is delimited at the north by the Taquari River, at the south by the 

Negro River, at the east by the Alegria Mountain Range and at the west by the Paraguay River 

(da Silva-Abdon, 1998). It has a special research importance because it is characterized as a 

mosaic of salt water lakes, fresh water lakes and vegetation corridors between them (Bazzo et 

al., 2011). To reduce computational time, a characteristic portion of the Nhecolândia sub-region 

with approximately 724 km2 was selected (Figure 8) where the following features could be 
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distinguished and therefore analyzed by this work: intermittent bodies of water, permanent 

bodies of water, vegetation and bare soil. 

 

 

Figure 7 - Historical series of precipitation data from Pantanal from 1971 to 2013 (Lázaro et 

al., 2020). Showing the total precipitation per year (black dots) and the proportion of days 

without precipitation (yellow dots). 

 

3.2. Data acquisition and preprocessing 

In this project, images from Sentinel-2 were used due to its open access nature, its high 

spatial resolution, temporal resolution and its multispectral capacity, detecting different ranges 

of the infrared band that will be useful for the index calculations. The data was downloaded 

from the official Copernicus Program website, more specifically from the Copernicus Open 

Access Hub (https://scihub.copernicus.eu). 

Images from the dry season and wet season from the year 2016 up until the year 2022 

were downloaded. To avoid high cloud coverage, a low cloud coverage image from the whole 

period of the high water stage and one of the whole period of the low water stage was selected 

for each year, as close as possible to the end of the stage (Table 2). 

The Sentinel-2 files downloaded had two distinct processing levels (Table 2): MSI – 

Level 1C, which is a level of preprocessing that provides an image with corrected geometry but 

still have Top-Of-Atmosphere (TOA) reflectance; MSI – Level 2A, which is a level of 

https://scihub.copernicus.eu/


12 

 

preprocessing that already has the geometry correction and the atmospheric correction, 

providing a Bottom-Of-Atmosphere (BOA) reflectance. At this step the software Sen2Cor 

provided by the ESA was used to preprocess the images at level 1C, they received atmospheric, 

terrain and cirrus corrections provided by the Atmospheric Precorrected Differential 

Absorption algorithm (Louis et al., 2016) and the resulting data is a level 2A image with BOA 

reflectance (Pignatale, 2022). Finally, the entirety of the dataset was clipped to the extent of the 

study target area using the software QGIS 3.22. 

 

 

Figure 8 - A) Location of the Pantanal inside Brazil, in red the Nhecolândia sub-region. B) 

Location of the target area in the Nhecolândia context. C) True color image from the Sentinel-

2 sensor sensed during the high water stage in 2017.01.27. 
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Table 2 - Acquisition date, processing level and stage of the satellite imagery downloaded from 

the Copernicus Open Acess Hub. 

Acquisition Date Processing Level Stage 

2016.03.13 1C High Water 

2016.09.09 1C Low Water 

2017.01.12 1C High Water 

2017.09.19 1C Low Water 

2018.02.06 1C High Water 

2018.09.24 1C Low Water 

2019.02.01 2A High Water 

2019.09.24 2A Low Water 

2020.03.21 2A High Water 

2020.09.23 2A Low Water 

2021.03.27 2A High Water 

2021.09.28 2A Low Water 

2022.02.25 2A High Water 

2022.08.14 2A Low Water 

 

3.3. Index calculation and classification 

The delineation of water bodies in areas filled with mangrove and mudflats is 

challenging due to the similarities of the spectral response of these surfaces with the water 

(Bishop-Taylor et al., 2019). To solve this problem, a wide range of different water delineation 

indexes from the literature were calculated using the raster calculator tool from the software 

QGIS 3.22, looking for the most capable in determining the difference between the surfaces.  

Those indexes are: (i) Normalized difference water index (NDWI) proposed by 

McFeeters (1996); (ii) Modified normalized difference water index (MNDWI) proposed by Xu 

(2006); (iii) New water index (NWI) proposed by Silio-Calzada et al. (2017) specifically for 

shallow lakes detection in the Pantanal region but for Landsat imagery; (iv) Automated water 

extraction index for shadow areas (AWEIsh) proposed by Feyisa et al. (2014), also for Landsat 
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imagery; (v) Sentinel water index (SWI) proposed by Jiang et al. (2021), tailored specifically 

for Sentinel-2 imagery. 

Most of these indexes were defined for use with Landsat data in mind, however Sentinel-

2 data is capable of measuring the reflectance of bands with similar wavelengths which could 

be used to calculate those indexes (Bhangale et al., 2020; Bijeesh et al., 2020; Jiang et al., 2021). 

For the ease of understanding, the Table 3 shows the correlation between each band in Landsat 

5 TM and Sentinel-2. 

Due to the limitation of the spatial resolution of the SWIR1 and SWIR2 bands, a 20 

meters spatial resolution was chosen for the calculation of the indexes to avoid pansharpening 

those bands and changing their original reflectance. 

 

Table 3 - Sentinel-2 bands and their respective correlated bands from Landsat 5 TM (Gatti-

Bertolini, 2013; USGS, 2018) 

Satellite Band 

Central 

Wavelength 

(µm) 

Resolution 

(m) 
Abbreviation Satellite Band 

Wavelength 

(µm) 

Resolution 

(m) 

S
en

ti
n
el

-2
 M

S
I 

B2 - Blue 0,492 10 𝜌𝐵𝑙𝑢𝑒 

L
an

d
sa

t 
5
 T

M
 

B1 - Blue 0,45 – 0,52 30 

B3 - Green 0,559 10 𝜌𝐺𝑟𝑒𝑒𝑛   B2 - Green 0,52 – 0,60 30 

B4 -Red 0,664 10 𝜌𝑅𝑒𝑑   B3 - Red 0,63 – 0,69 30 

B8A - Red 

edge 
0,864 20 𝜌𝑁𝐼𝑅   

B4 - Near-

infrared 
0,76 – 0,90 30 

B11 - 

SWIR1 
1,613 20 𝜌𝑆𝑊𝐼𝑅1   

B5 - Near-

infrared 
1,55 – 1,75 30 

B12 - 

SWIR2 
2,202 20 𝜌𝑆𝑊𝐼𝑅2   

B7 - Mid-

infrared 
2,08 – 2,35 30 

 

3.3.1. NDWI 

The NDWI index was calculated using equation 2, proposed by McFeeters (1996), to 

estimate open water in the region. This index ranges from -1 (land) to 1 (water) and uses the 

visible green and the near-infrared (NIR) ratios to separate water pixels based on water’s high 

reflectance of visible green and low reflectance of NIR. As this index was initially proposed for 

use on Landsat 5 data, the green band and the near-infrared band can be correlated to the green 

band (band 3 of the Sentinel-2 data) and the near-infrared band (band 8 of the Sentinel-2 data) 
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from the Sentinel-2 satellite (Jiang et al., 2021), which are represented as  𝜌𝐺𝑟𝑒𝑒𝑛  and 𝜌𝑁𝐼𝑅 in 

the formula respectively. 

 

𝑁𝐷𝑊𝐼 =  
𝜌𝐺𝑟𝑒𝑒𝑛  −  𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑁𝐼𝑅

(2) 

 

3.3.2. MNDWI 

The MNDWI index was calculated using equation 3, proposed by Xu (2006), to estimate 

open water in the region. This index is a modification of the one constructed by McFeeters 

(1996) and utilize a similar green band but instead of the near-infrared one it applies a middle-

infrared which has wavelength similar to the SWIR1 band of Sentinel-2. Therefore band 11 can 

be used as the middle-infrared component proposed by Xu (2006) and is represented as  𝜌𝑆𝑊𝐼𝑅1 

in the MNDWI equation. 

 

𝑀𝑁𝐷𝑊𝐼 =  
𝜌𝐺𝑟𝑒𝑒𝑛  −  𝜌𝑆𝑊𝐼𝑅1

𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑆𝑊𝐼𝑅1

(3) 

 

3.3.3. NWI 

The NWI index was calculated using equation 4, proposed by Silio-Calzada et al. 

(2017), to estimate open water in the region. This index was proposed specifically for water 

detection in the Pantanal region using Landsat imagery. For its application the Landsat 5 visible 

bands 1, 2, 3, 4, 5 and 7 were correlated to the Sentinel-2 visible bands 2, 3, 4, 8, 11 and 12 

respectively. 

 

𝑁𝑊𝐼 =  
(𝜌𝐵𝑙𝑢𝑒 +  𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑅𝑒𝑑) − (𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑆𝑊𝐼𝑅2)

(𝜌𝐵𝑙𝑢𝑒 +  𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑅𝑒𝑑) + (𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑆𝑊𝐼𝑅2)
(4) 

 

3.3.4. AWEIsh 

The AWEIsh index was calculated using equation 5, proposed by Feyisa (2014), to 

estimate open water in the region. The index was produced for use with Landsat 5 data, 

therefore similar bands from Sentinel-2 are used instead. 
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𝐴𝑊𝐸𝐼𝑠ℎ =  𝜌𝐵𝑙𝑢𝑒 + 2,5 × 𝜌𝐺𝑟𝑒𝑒𝑛 − 1,5(𝜌𝑁𝐼𝑅 +  𝜌𝑆𝑊𝐼𝑅) − 0,25 × 𝜌𝑆𝑊𝐼𝑅2 (5) 

 

3.3.5. SWI 

The SWI index was calculated using equation 6, proposed by Jiang (2021), to estimate 

open water in the region. This index was made to better delineate bodies of water when using 

Sentinel-2 imagery since most of the indexes in the literature with this objective are built with 

other sensors data in mind. Because of this, it uses the band 5, vegetation red edge, that is 

denoted as 𝜌𝑉𝑅𝐸1 in the equation bellow. 

 

𝑆𝑊𝐼 =  
𝜌𝑉𝑅𝐸1  −  𝜌𝑆𝑊𝐼𝑅2

𝜌𝑉𝑅𝐸1 +  𝜌𝑆𝑊𝐼𝑅2

(6) 

 

3.3.6. Otsu’s algorithm thresholding 

Otsu’s threshold method is an efficient, widely used image binarization algorithm that 

distinguish objects and background using the maximum variance between them. When the 

pixels values of a determined image can be separated in two categories, Otsu’s algorithm can 

determine the optimal threshold that is capable to distinguishing them (Otsu, 1979). This 

algorithm has been widely used for the automatic delineation of water bodies in remote sensing 

(Sekertekin, 2019). 

Histograms with the frequency distribution for each index were produced using QGIS 

3.22 and analyzed. Then, the Otsu’s algorithm for image thresholding was applied for each 

index. For this, a python script was developed using the OpenCV library (Bradski-Kaehler, 

2008) to import and convert the images to grayscale and then calculate the optimal threshold 

using the algorithm. 

To use the Otsu’s algorithm, it is necessary a grayscale 8-bit integer image, which can 

store values ranging from 0 to 255. In order to convert the float 32-bit images resulting from 

the index calculation an equation was applied to each pixel of the index images aiming to 

preserve their distribution while changing their values to range between 0 and 255. Equation 7 

was applied for most of the indexes, NDWI, MNDWI, NWI and SWI because of their range 

between -1 and 1. While Equation 8 was applied to the AWEIsh index due to its wider range of 

values. In both equations Po refers to the original value of the pixel while Pn refers to the new 

value of the pixel.  
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𝑃𝑛 =  (𝑃𝑜 + 1) × 100 (7) 

𝑃𝑛 =  
(𝑃𝑜 + 10.000)

100
(8) 

 

After the threshold calculation, the resulting pixel value was used in equation 7 or 8 to 

get back the original pixel value to be used as threshold in the calculated indexes. The results 

can be visualized in table 4. Finally, a water extraction map was constructed for each index 

calculated using this threshold, highlighting the open water surface defined by each one. 

 

Table 4 - Optimal threshold defined by the Otsu’s algorithm for each index used. 

Index 
Otsu's Algorithm 

Threshold 

NDWI -0,6 

MNDWI -0,38 

NWI -0,53 

AWEIsh -4.272 

SWI 0 

 

3.4. Accuracy Assessment 

To assess the quality of the delineation of each index for the region, they were compared 

in the high-water season of 2017 where high resolution (1,2 meters spatial resolution) satellite 

images from Maxar were available through ArcGIS Online. A visual interpretation and a 

quantitative accuracy index were used to assess the accuracy of the water extraction maps 

created. First, they were visually compared with each other and with a true color image (TCI), 

a false color image (band 8 as red, band 4 as green and band 3 as blue) and a high spatial 

resolution image. At this step, visual effects which can quickly appraise the performance of the 

method such as continuity, smoothness and salt and pepper effect were observed.  

For the quantitative accuracy, 100 sample points were randomly generated (Figure 9). 

Then, through photointerpretation of true color images, false color images and high-resolution 

imagery they were classified, 21 water sample points and 79 non-water sample points were 

identified (Figure 9). This data was then used as the ground reference points for the accuracy 

evaluation of the indexes. 
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Figure 9 - A) Distribution of the random points generated for the target area and their respective 

classification, in the background a true color image from Sentinel-2. B) Detailed view of the 

highlighted area in Figure 9A showing two random points in the higher resolution Maxar true 

color image. 

 

To evaluate the accuracy of these images, they should be compared to the reference 

random points that are presumed to be correct (Foody, 2002). The result of this comparison 

should be a confusion matrix, pointing out the errors that the classification presented when 

compared to the referential data (Congalton, 1991). From this confusion matrix a Kappa index 

can be calculated and it will be used to evaluate the quality of the resulting classification 

according to Landis and Koch (1977) evaluation criteria (Table 5). 

 

Table 5 - Relative strength of agreement associated with the Kappa index (Landis-Koch, 1977). 

Kappa Index 
Strength of 

Agreement 

< 0 Poor 

0 - 0,2 Slight 

0,21 - 0,4 Fair 

0,41 - 0,6 Moderate 

0,61 - 0,8 Substantial 

0,81 - 1 Almost Perfect 
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The index images were reclassified using the threshold calculated by the Otsu algorithm 

creating binary images, classifying the pixels as water pixels or non-water pixels. Then, using 

Orfeo ToolBox confusion matrix tool (Grizonnet et al., 2017), a confusion matrix was built and 

a Kappa index was calculated. 

After this analysis, most of the indexes were abandoned and the AWEIsh was chosen as 

the most fitting index for the region and will be used further on this work. 

 

3.5. Thematical maps time series and landcover change 

At last, using the AWEIsh index and a -4.272 threshold, a thematic map for each year 

high water and low water was built in the WGS 84 / UTM zone 21S (EPSG 32721) projected 

coordinate system with a 1:400.000 scale. To evaluate the accuracy of these maps a similar 

method to the accuracy evaluation of the indexes was applied. First, 100 random points were 

generated for each map and then through photointerpretation of true color images and false 

color images they were classified as water or non-water. Later on, using Orfeo ToolBox 

confusion matrix tool (Grizonnet et al., 2017), a confusion matrix was built and a kappa index 

calculated. They were then compared and analyzed to assess the evolution of the hydrography 

of the water bodies of the target region. 

To better understand and measure the changes in water surface area between the seasons 

and the years, the total water surface and the differences between the seasons in each year were 

measured. For this, the land cover change tool from the Semi-Automatic Classification Plugin 

(Congedo, 2021) for QGIS was utilized. The result provided the number of pixels and area for 

4 different classes: (i) water unchanged, (ii) non-water unchanged, (iii) non-water to water and 

(iv) water to non-water. 
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4. RESULTS AND DISCUSSION 

4.1. Index accuracy evaluation 

Due to the complex nature of the region, the application of five different indexes was 

analyzed for the 2017 high water data of the time series. The results for each index and their 

respective threshold calculated by the Otsu’s algorithm can be visualized in a frequency 

histogram (Figure 10). It is possible to observe that each index accounted for a different total 

number of pixels classified as water.  

From the histograms (Figure 10) we can predict that the SWI index oversampled the 

pixels and detected other features as water. Conversely, the MNDWI index sampled too few 

pixels and failed to delineate some bodies of water (Figures 10 and 11). 

Five water extraction maps were created (Figure 11) using the geographic projection 

WGS 84 / UTM zone 21S (EPSG 32721) with a scale of 1:500.000. The difference in the total 

water surface between the different indexes is even more evident in those maps mostly in the 

SWI and MNDWI maps that showed a much larger water surface and a much smaller water 

surface respectively (Figure 11).  

It is also possible to observe problems with continuity, smoothness and salt and pepper 

effect in some indexes (Figures 11 and 12). The NDWI, MNDWI and NWI indexes showed 

regularly problems with continuity and salt and pepper effect, as seen on figure 12, while the 

AWEIsh index had a better result overall, showing problems but in more isolated areas. On the 

other hand, the SWI index oversampled heavily and even though it didn’t show much problems 

with continuity and smoothness it recognized most of the vegetation as water (Figure 12). 

All of the indexes had some difficulty to distinguish wet soil and water (Figure 12), 

while the NDWI also identified regular soil as water. The NDWI and NWI indexes presented 

salt and pepper effect in heavily vegetated areas, while the AWEIsh index had difficulty to 

distinguish heavily vegetated water (Figure 12). 

Finally, the accuracy assessment performed by confusion matrix (Table 6) and Kappa 

index (Table 7) determined that the most fitting index for the area is the AWEIsh. With a Kappa 

index of 0,87 it is considered by the Landis and Koch (1977) strength of agreement table as an 

almost perfect correlation. 
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Figure 10 - Frequency histogram for each of the five water delineation index evaluated, in red 

the threshold calculated by the Otsu’s algorithm. 
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Figure 11 - Water extraction map for each of the evaluated indexes, constructed based on 

Sentinel-2 sensed data from 2017.01.27. Geographic projection WGS 84 / UTM zone 21S 

(EPSG 32721), scale 1:500.000. 
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Figure 12 - Detailed observation of the indexes calculated for the high water of 2017. In the 

background high-resolution imagery from Maxar. Maps in the scale 1:50.000, geographic 

projection WGS 84 / UTM zone 21S (EPSG 32721). 
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Table 6 - Confusion matrix for each index using the threshold determined by the Otsu’s 

algorithm and the random points classified as ground truth. 

 

 

Table 7 - Kappa index, overall accuracy and strength of agreement for each analyzed water 

extraction index. 

Water Extraction Index Kappa Index Overall Accuracy 
Strength of Agreement 

(Landis-Koch, 1977) 

NDWI 0,32 0,67 Fair 

MNDWI 0,64 0,9 Substantial 

NWI 0,48 0,78 Moderate 

SWI 0,27 0,61 Fair 

AWEIsh 0,87 0,96 Almost Perfect 

 

4.2. Time series 

Figures 13, 14, 15, 16, 17, 18 and 19 show two maps of water surface delineation for 

each of the seven years analyzed. All the maps are presented in geographic projection WGS 84 
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/ UTM zone 21S (EPSG 32721) and scale 1:400.000. In the background of each map is a true 

color image of the dataset used to produce the water extraction data. 
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Figure 13 - Water extraction maps for the high and low water stages of the year 2016. 
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Figure 14 - Water extraction maps for the high and low water stages of the year 2017. 



27 

 

0 5 10 km Water Surface

570000E 580000E 590000E 600000E

7
9

1
0

00
0

N
7

9
2

0
0

00
N

2018 High Water
Date: 2018.02.06

0 5 10 km Water Surface

570000E 580000E 590000E 600000E

7
9

1
0

0
00

N
7

9
2

0
0

0
0N

2018 Low Water
Date: 2018.09.24

 

Figure 15 - Water extraction maps for the high and low water stages of the year 2018. 
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Figure 16 - Water extraction maps for the high and low water stages of the year 2019. 
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Figure 17 - Water extraction maps for the high and low water stages of the year 2020. 
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Figure 18 - Water extraction maps for the high and low water stages of the year 2021. 
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Figure 19 - Water extraction maps for the high and low water stages of the year 2022. 
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At first glance, it is easy to visualize the dramatic difference of water surface between 

seasons. It is also possible to observe that there was a substantial decrease in water surface from 

the low water stage of 2020 onwards. the high water stage has seen a decrease since the year of 

2018 but not as dramatic as the one observed in the dry season. 

The volume of oversampled pixels is not constant, as it is possible to observe that certain 

images have a much higher volume of wrongly extracted pixels. This is especially visible at the 

low water of 2022 (Figure 19), where a lot of vegetation pixels were detected as water by the 

index. This problem is mostly present in the images of the low water stage. 

4.3. Water surface accuracy evaluation 

Overall, the water surface extraction images have a good accuracy and most of them 

were classified as an almost perfect correlation (Table 9) by the Landis-Koch (1977) strength 

of agreement method. The confusion matrixes show that there is a small undersampling of water 

pixels at the high water stage and its mostly visible at the 2016 high water (Table 8). There is 

also a small oversampling of water pixels that is mostly visible at the 2022 low water and at the 

cloudy areas from 2019 high water and 2018 low water (Table 8). 

 

Table 8 – Confusion matrix for each stage throughout the years analyzed using the random 

points classified as ground truth. 
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4.4. Water surface change 

Seven water surface change maps were made to visualize the changes between the 

seasons in each year (Figures 20, 21, 22 and 23). The water surface change calculations were 

performed between the high water stage and low water stage of each year of the time series. Its 

results can be seen at table 10 or visually at figure 25. 

From the water surface change maps it is possible to visualize that the larger lakes, at 

the southwest of the target area, rarely dry up from the wet to the dry season and mostly retain 

their size. Between years, however, their size did decrease and their numbers skewed from the 

beginning to the end of the time series. The lakes next to the center of the area suffered a 

decrease between seasons. Some of them even dry up completely between the high water and 

the low water. 
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Table 9 – Kappa index, overall accuracy and strength of agreement for each stage of the years 

analyzed. 

Image Kappa Index 
Overall 

Accuracy 
Strength of Agreement 

(Landis-Koch, 1977) 

2016 - High Water 0,83 0,93 Almost Perfect 

2016 - Low Water 0,89 0,98 Almost Perfect 

2017 - High Water 0,87 0,96 Almost Perfect 

2017 - Low Water 0,73 0,94 Substantial 

2018 - High Water 0,86 0,95 Almost Perfect 

2018 - Low Water 0,62 0,89 Substantial 

2019 - High Water 0,28 0,85 Fair 

2019 - Low Water 0,65 0,98 Substantial 

2020 - High Water 0,88 0,97 Almost Perfect 

2020 - Low Water 0,88 0,99 Almost Perfect 

2021 - High Water 0,93 0,99 Almost Perfect 

2021 - Low Water 0,66 0,99 Substantial 

2022 - High Water 0,87 0,98 Almost Perfect 

2022 - Low Water 0,43 0,93 Fair 

 

The features that were affected the most between the wet and the dry season were the 

braided rivers. In the target area during the high water it is possible to observe one braided river 

that runs through the area from west to the east and splits itself in two, one to the north and one 

to the south. During the low water, however, this feature is almost completely dried, being one 

of the factors that most influences the changes in water surface area. Throughout the year these 

rivers suffered a dramatic decrease in their sizes. 

The pixels classified as non-water to water change highlighted the oversampled problem 

observed in the water extraction maps (Figure 24). This problem occurs mostly on dark 

vegetation canopy pixels during the low water stage. It is noticeable that the pixels highlighted 

as non-water to water rarely represents circular or ellipsoidal shapes and have problems of 

continuity and smoothness. Moreover, given the nature of the region, the increase of the water 

surface from the high water stage to the low water stage is contradictory (DaSilva-Silva, 1995; 
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Junk et al., 2014) and the measuring of these pixels during the low water stage represents an 

issue to the method applied in this work.  

 

570000E 580000E 590000E 600000E

7
9

1
0

0
00

N
7

9
2

0
0

00
N

2016

0 5 10 km

Unchanged water pixel

Water to non-water pixel

Non-water to water pixel

570000E 580000E 590000E 600000E

79
1

0
0

0
0

N
7

92
0

0
0

0
N

2017

 

Figure 20 - Water surface change maps for the years 2016 and 2017. 
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Figure 21 - Water surface change maps for the years 2018 and 2019. 
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Figure 22 - Water surface change maps for the years 2020 and 2021. 
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Figure 23 - Water surface change map for the year 2022. 
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Figure 24 - Detailed visualization of the non-water to water pixels for the low water stage of 

2022, in the background a Sentinel-2 true color image. Scale 1:50.000 geographic projection 

WGS 84 / UTM zone 21S (EPSG 32721). 
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To avoid the measurement of oversampled pixels of vegetation (Figure 24) during the 

water surface area calculation, the water surface area for the low water stage (Alw) was 

calculated (Equation 9) using the water surface area from the high water stage (Ahw) of the same 

year minus the area occupied by the pixels that were detected as changing from water to non-

water (Cw-nw) at that year by the land cover change tool. This was done assuming that new 

bodies of water should not appear during a dryer season with lesser water influx. 

 

𝐴𝑙𝑤 = 𝐴ℎ𝑤 − 𝐶𝑤−𝑛𝑤 (9) 

 

Table 10 - Water surface detected for the years 2016 through 2022 and their variation between 

the seasons. 

Year / Stage 
Water Surface 

(km2) 

Water Surface 

(% of total 

area) 

Year 

Variance 

(km2) 

Year Variance         

(% of water 

surface reduction) 

2016 High Water 238,25 32,93 
179,96 75,53 

2016 Low Water 58,29 8,06 

2017 High Water 127,97 17,69 
83,45 65,21 

2017 Low Water 44,52 6,15 

2018 High Water 180,25 24,91 
108,49 60,19 

2018 Low Water 71,76 9,92 

2019 High Water 156,50 21,63 
118,43 75,68 

2019 Low Water 38,07 5,26 

2020 High Water 84,71 11,71 
70,53 83,26 

2020 Low Water 14,18 1,96 

2021 High Water 46,20 6,38 
42,10 91,13 

2021 Low Water 4,10 0,57 

2022 High Water 40,20 5,56 
29,99 74,60 

2022 Low Water 10,21 1,41 
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Figure 25 - Graph showing the water surface (km2) for the target area through the year of 2016 

up to 2022 in its high water stage (blue), and low water stage (yellow). 

 

The data shows a dramatic decrease in water surface between 2016 and 2022 (Figure 

25), roughly an 83% decrease from the high water of 2016 to the high water of 2022 was 

observed. With the exception of the year 2017, we see a steady decrease of water surface during 

high water up to 2019 and then a sharp decrease in 2020 that is preserved up to 2022. The 

different behavior of the year 2017 could be due to its early sensing date in January (Table 10). 

The decrease in area between the high water and low water is on average 75%, and the 

water surface area during the low water stage has a similar behavior to the water surface area 

during the high water stage throughout the years (Figure 25). However, 2018 was exceptionally 

wet with a decrease of only 60% (Table 10), which could be due to the cloud cover in the data 

used, and 2021 was exceptionally dry with a decrease of 91% (Table 10). 
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5. SUMMARY 

Remote sensing has already been proved to be a useful technique to monitor water 

bodies easily, cheaply and quickly. This work helps to broaden the horizon of possibilities of 

these techniques when applied to a complex and unique environment such as the Pantanal. Also, 

the workflow here presented assists the use of Sentinel-2 imagery to a broader range of 

objectives, since it has a better spatial, temporal and spectral resolution than the most commonly 

used sensors in water delineation. 

Even though the subject of water surface extraction is widely discussed, it still has issues 

and it is still not suitable to all scenarios (Bijeesh- Narasimhamurthy, 2020). Therefore, this 

work helps to define a useful water extraction index method for the Pantanal region. The 

automated water extraction index for shadow areas (AWEIsh) coupled with the Otsu’s 

algorithm thresholding proved to be a reliable method for water surface extraction, achieving a 

Kappa index of 0,87 (Table 7) and producing a 20 meters spatial resolution water surface 

extraction image (Figures 13, 14, 15, 16, 17, 18 and 19). 

The analysis of the water surface changes between the seasons, however, highlighted 

that this method is not without shortcomings. The sampling of vegetation canopy during the 

dry season (figure 24) is an issue of this method that could be worked further. This, however, 

do not disable the method for delivering useful information as the accuracy evaluation 

demonstrated reliable results and overall a good Kappa index for all the images created       

(Table 9). With the proper treatment, the data acquired from this method can be used for water 

surface measurements and monitoring. 

The application of this method to the target area unveiled a decrease in the water surface 

area of the region during the timespan of the study and mostly since 2020 (Figure 25). The 

water surface area during the high water ranged from 238 km2 up to 40 km2 (Table 10), while 

during the low water it ranged from 72 km2 up to 4 km2 (Table 10). On average, there was a 

75% decrease in water surface area between the wet and dry season (Table 10). 

This study, therefore, adds new data that corroborate to the worrying scenario of climatic 

change in the Brazilian Pantanal that is already being studied (Marengo et al., 2016; Lázaro et 

al., 2020). Most importantly, this work also provides a useful methodology that can be 

programmatically constructed to be automated and continuously generate water extraction 

maps for the region or be applied to a larger dataset without the need of human interference. 
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