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Abstract 

Flood is one of the most devastating natural catastrophes that occur and cause loss of 

life and property in Hungary. Therefore, the main goal of this research was to generate flood 

susceptibility maps and comparison of them in Hungary using three different models, namely 

support vector machine (SVM), logistic regression (LR), and random forest (RF). In the present 

study, 385 locations were assigned as flood sample points {0}, and 385 locations were assigned 

as non-flooding points {1} in the Google Earth program for modelling, and it separated into 

two parts, %70 and %30 as training and test sets, respectively. Furthermore, a total of 16 flood 

influencing factors were generated in the ArcGIS environment, including distance to roads, 

aspect, curvature, stream power index (SPI), elevation, distance to rivers, land-use/cover 

(LULC), normalized difference vegetation index (NDVI), rainfall, terrain roughness index 

(TRI), slope, profile curvature, soil type, topographic wetness index (TWI), plan curvature, and 

sediment transport index (STI) for use in the modelling.  

The receiver operating characteristic (ROC) curve and area under curve (AUC) were 

utilized to assess the three flood susceptibility map's model performance. According to ROC 

curve validation, AUC rate values in the modelling, for SVM, RF, and  LR, were 0.993 (99.3%), 

0.999 (99.9%), and 0.993 (99.3%), respectively. Thus, based on these values, the RF approach 

was the most accurate way to produce flood susceptibility maps in Hungary, as it had the grea-

test area under the curve and the highest value of accuracy (0.999) in the modelling. Moreover, 

since SVM and LR methods show values very close to RF accuracy, they can also be accepted 

and used in the studies.  

As a result, the flood susceptibility maps created with three different machine learning 

techniques used in this study can help the relevant institutions in their flood planning studies 

and flood control in order to reduce the flood effects that may occur in the future. 

 

 

 

 

Keywords: Geographic information system (GIS), Machine Learning, Flood susceptibility 

map, Hungary, Support Vector Machine, Random Forest, Logistic Regression 
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1. Introduction 

Flood disasters that have occurred from the past to the present have caused hundreds 

and thousands of losses of life and property and have affected Hungary and all Central European 

Countries on a large scale (Alfred & Uwe, 2003). Research and studies predict that the destruc-

tive effects of flood events in Europe may increase due to the effects of global warming and 

affect human life in a chaotic manner and fatality (Alfieri et al., 2015; Forzieri et al., 2016; 

Jochen et al., 2014; Jongman et al., 2014; Paprotny & Morales-Nápoles, 2017; Vousdoukas et 

al., 2017; Winsemius et al., 2016).  

According to Statista Database Company (https://www.statista.com/statistics/ accessed 

date: Thursday, 31 March 2022)), floods account for the largest share in the types of natural 

disasters that occurred in Europe between 2001 and 2020, with 41 percent., which makes the 

flood disaster is the highest figure for any disaster type in Europe. In addition, flood disasters 

were the most common natural disaster worldwide (201 events), while hurricanes affect the 

most people (45.5 million) and cause the most economic losses ($92.7 billion). Extreme tem-

peratures were the most deadly type of disaster, accounting for 42% of all deaths, followed by 

floods, accounting for 1% of deaths in 2021 (CRED & UNDRR, 2021). As we can see from the 

map of river flood discharges  in Europe between 1960-2010 that shown in (Blöschl et al., 

2019), Hungary is one of the most flood-prone countries in Europe, and we can support this 

statement by looking at the highest ever observed Danube water levels and the flood defense 

that cost €58 million in 2013 (International Commission for the Protection of the Danube 

River(ICPDR), 2013). Therefore, flood risk assessment and prediction are major challenges in 

developing and developed cities. Rapid population growth, rapid urbanization, human factors, 

and climate change will increase the significance of this challenge (Huong & Pathirana, 2013). 

Climate changes combined with human factors, in the escalation of severe natural disasters, in 

terms of the effects of flood disasters on social life during and after the flood, financial damage, 

loss of life, and damage to the environment play an important role. For this reason, appropriate 

monitoring to identify areas prone to floods is considered crucial to mitigate risks and losses by 

preventing unexpected flooding (Arshad et al., 2019; Huong & Pathirana, 2013; Quesada-

Román et al., 2020, 2022; Said et al., 2019; Yu et al., 2018). 

https://www.statista.com/statistics/1269886/most-common-natural-disasters-in-europe/
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Fig.1. Selected location of inundated areas in the 2013 flood on the elevation map, (a) Györ, (b) Esztergom, (c) 

Nagymaros, (d) and (e) Budapest. 

As seen in (Fig.1), extreme floods in the Hungarian portion of the Tisza River basin and 

Danube river basin have affected many towns, social and economic life along with the natural 

life (Albright, 2011). For example, the last flood happened in several locations in Hungary, 
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including the capital city Budapest. According to Directorate General for Disaster Management 

(BM Országos Katasztrófavédelmi Főigazgatóság ), authorized teams performed more than 400 

operations; however, a woman died in a flood disaster in Tótvázsony, Veszprém County after 

being dragged by the floodwaters. In addition to this fatal outcome, firefighters rescued about 

14 people from flooded houses in the Fejér district and about 30 houses flooded in Szücsi, 

Heves District. Besides nature, it also economically damaged human-made structures such as 

buildings, roads, and power lines. (https://floodlist.com/europe/hungary-czech-storms-floods-

june-2020 accessed date: Thursday 31 March 2022 ). Moreover, we can understand how neces-

sary the flood risk mapping is for the Hungarian sample study area, according to the lessons to 

be drawn from “The Great River Flood of Pest(1938)”, “The Great Flood of Szeged” that oc-

curred in the past of Hungary and also by looking at major flooding events occurred in the 

Danube River Basin and Tisza River basin in the recent past in 2002, 2005, 2006, 2009, 2010, 

2013 and 2014 years in Hungary. (https://hungarytoday.hu/great-flood-pest-1838/ accessed 

date: Saturday 2 April 2022; https://www.icpdr.org/main/danube-basin/hungary accessed date: 

Wednesday 6 April 2022 ). 

Many different flood forecasting methods and techniques have been used in the litera-

ture. As researchers explain; (Pappenberger et al., 2006; Sarhadi et al., 2012), flood forecasting 

is complicated and complex that is difficult to do, and precise prediction of flood occurrence, 

both spatially and temporally, is a challenging task. In the previous studies, one of the most 

prevalent flood-prone areas and flood hazard areas analysis is the hydraulic models, which give 

information regarding the inundated area, water level, and water flow velocity based on one-

dimensional or two-dimensional hydrologic models. (Gharbi et al., 2016; M. et al., 2014). An-

other common technique used in flood susceptibility maps is the multi-criteria decision analysis 

(MCDA) (Elsheikh et al., 2015; Gudiyangada Nachappa et al., 2020; Papaioannou et al., 2015). 

In the literature, along with the multi-criteria decision making, flood susceptibility maps created 

using the MHDM technique and the analytical hierarchy process(AHP) technique have been 

used as well in studies (Souissi et al., 2020). 

Although there are many Geographic Information Systems based flood susceptibility 

maps in the literature, support vector machines (SVM) (Choubin et al., 2019; Tehrany et al., 

2014; Tehrany, Pradhan, Mansor, et al., 2015), decision trees (Khosravi et al., 2018; Merz et 

al., 2013; Tehrany et al., 2013; Tingsanchali & Karim, 2010; Yariyan et al., 2020), frequency 

ratio (FR) (Lee et al., 2012; Samanta et al., 2018; Shafapour Tehrany et al., 2019), Logistic 

Regression (Al-Juaidi et al., 2018; Shafapour Tehrany et al., 2019; Tehrany et al., 2013) and 

https://www.katasztrofavedelem.hu/
https://floodlist.com/europe/hungary-czech-storms-floods-june-2020
https://floodlist.com/europe/hungary-czech-storms-floods-june-2020
https://hungarytoday.hu/great-flood-pest-1838/
https://www.icpdr.org/main/danube-basin/hungary
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Artificial neural networks (Kia et al., 2012; Shafizadeh-Moghadam et al., 2018) are the most 

common and effective techniques used in flood mapping. In flood susceptibility mapping, the 

accuracy of the forecast, as well as the flood forecast, prediction, and model, is of great impor-

tance. Thus, in this study, three machine learning models were implemented to create a flood 

susceptibility map by using satellite images and GIS tools. These techniques are support vector 

machine(SVM), logistic regression(LR), and random forest(RF). Furthermore, the accuracy and 

contribution of machine learning methods to flood, prone areas to flood, and the results of flood 

susceptibility mapping were examined.  

2. Materials and method 

2.1. Study area 

The main aim of this study is to obtain flood susceptibility maps in Hungary using three 

models: Support Vector Machines (SVM), logistic regression (LR), and Random Forest (FR). 

Hungary is a landlocked country located in the Carpathian Basin, lies between longitudes 

22°55′ E and 16°8′ E and latitudes 48°35′ N and 45°45′ N in Central Europe with seven neigh-

bors: Slovakia in the north, Ukraine in the northeast, Romania in the east and southeast, Serbia 

in the south, Croatia and Slovenia in the southwest and Austria in the West (Fig. 2). The country 

is mostly flat and in the north has mountlets, with the highest mountain of Hungary’s Kékes at 

1,014 meters above sea level. The country spans about 93,030 square kilometers of the Carpat-

hian Basin, divided between land areas and water sources. The Land covers approximately 

34,598 square miles, while water covers the remaining 1,320 square miles of Hungary’s total 

size. There are two main and longest rivers which are called Danube and Tisza divide the co-

untry into the three parts; Transdanubia(the west side of the Danube River), the plain part of 

the country between the Danube River and Tisza river, and the Trans-Tisza region(the east side 

of the Tisza River) (Masek, 2018). 
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              Fig. 2. The study area showing the distribution of flood and non-flood sample points locations 

2.2. Data used 

2.2.1. Preparation of the flood sample points  

 

Generation of the flood inventory map is usually the initial and most crucial step to be 

applied in the flood susceptibility mapping (Masood & Takeuchi, 2012). In order to predict 

eventual flood events in any geographical area, it is one of the most critical points to analyze 

the flood records that have occurred in the past (Tehrany & Kumar, 2018). The flood inventory 

map, which shows the locations of previous floods, is required for the flood susceptibility mo-

deling (Manandhar, 2010). It displays past flood records in a particular place. The flood sample 

points database, which is generated based on the past flood events, is both an important layer 

for the analysis of flood events and an essential factor in predicting the future flood events by 

associating them with the flood affecting factors (3.3.2). In the present study, a flood sample 

points map was generated by examining and using the existing historical flood data and flood 

reports of The International Commission for the Protection of the Danube River, The General 

Directorate of Water Management Hungary, local and global journal, and documentary sources. 
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Three hundred eighty-five(385) points were assigned as flood sample points and, on an equal 

number with 385 location points, were considered non-flood points. 

The flood inventory map consists of 0 and 1 values, and values of 0 represent flood 

points, while values of 1 represent non-flood points. Non-flood points are randomly selected 

from mountainous areas with high points where there is no possibility of flooding. The flood 

inventory map is randomly divided into two parts, as %70 training dataset and %30 test dataset. 

In this case, 270 points were selected randomly and considered a dependent factor. Remained 

that %30 flood and non-flood locations, corresponding to 115 flood points, were used for tes-

ting. 

2.2.2. Generation of the factors affecting the floods in the GIS-based software 

According to the studies, there is no strictly conditioned and mandatory flood influen-

cing factors list. Flood influencing factors were prepared elaborately by choosing among the 

factors selected and commonly used in the majority according to the studies in the literatüre 

(Dodangeh et al., 2020; Janizadeh et al., 2019; Khosravi et al., 2019; Shafizadeh-Moghadam et 

al., 2018). Therefore, 16 factors were used in this study to obtain the susceptibility maps. These 

flood influencing factors are distance to roads, aspect, curvature, stream power index (SPI), 

elevation, distance to rivers, land-use/cover (LULC), normalized difference vegetation index 

(NDVI), rainfall, terrain roughness index (TRI), slope, profile curvature, soil type, topographic 

wetness index (TWI), plan curvature, and sediment transport index (STI), respectively, as 

shown in (Fig. 3). 
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(a) (b) 

(d) (c) 

(e) (f) 

(g) (h) 
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Fig. 3. Thematic representation of the flood influencing factors used in this study. 

 

(i) (j) 

(l) (k) 

(m) (n) 

(p) (o) 
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2.2.2.1.  Elevation 

The Elevation is also one of the significant and influential flood affecting factors in-

volved in the flooding of an area. There is an opposite relationship between the altitude of a 

territory and flooding. The places with lower altitudes are more inclined to flooding (Choubin 

et al., 2019). The main reason for this is the rainwater flowing from the mountains at high levels, 

the snow, and glacial waters that melt and flow towards the spring and summer months. The 

elevation map was generated using the tools in the ArcGIS 10.3 interface of the arc-1 images 

downloaded from USGS. The digital elevation map (DEM) was generated using the shuttle 

radar topography mission (SRTM) 1 arc-second global images downloaded from the United 

States Geological Survey (USGS) web page using the tools in the ArcGIS 10.3 interface (Fig. 

3e). 

2.2.2.2.  Aspect 

The contribution of the aspect in previous works and studies on flood susceptibility 

maps demonstrates the importance of the aspect due to its widespread use as a factor influencing 

floods (Shafizadeh-Moghadam et al., 2018). Sunlit slopes are less humid and, therefore less 

prone to flooding. Slope aspect also has a significant influence on moisture content in the soil 

as well as meteorological conditions (Rahmati et al., 2016). ). In the present study, the aspect 

map was generated from the digital elevation model (DEM) by using the tools in ArcGIS 10.3 

and the aspect layer was divided into ten classes as represented in (Fig. 3a). 

2.2.2.3.  Slope 

The wide distribution of low slope areas in the basin significantly affects the flood po-

tential in the region (Khosravi, Pourghasemi, et al., 2016). There is an inverse proportionality 

between the flatness of the slope and the dewatering of the flooded area. Dewatering becomes 

more difficult as the slope decreases and the region flattens. In this case, considering the Great 

Hungarian Plain, which occupies the majority of the modern territory of Hungary, mainly in 

the eastern and southeastern areas of Hungary, it is clear that it will be difficult to clear this area 

from the water. The flowage volume and velocity are highly affected by the slope, which high-

lights the necessity of the slope. (Tien Bui et al., 2018) stated that the volume and velocity of 

runoff increase as the slope gradient increases. In the present study, the slope map was genera-

ted from the digital elevation model (DEM) by using the tools in ArcGIS 10.3, and the slope 

layer was classified into five categories as represented in (Fig. 3i). The slope angle in this study 

ranges from 0 to 67.5° degrees. 

 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
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2.2.2.4.  Curvature 

The curvature represents the ground surface shape, such as flat, convex, and concave 

areas, which gives useful information that flat areas are more prone to flooding, as noted earlier 

on the slope (Khosravi et al., 2019; Tehrany, Pradhan, & Jebur, 2015). The curvature map is 

also generated from the digital elevation model (DEM) and consists of 3 classes as shown in 

(Fig. 3b). In these classes, negative(-) values represent convex, positive(+) values represent 

concave, and values corresponding to 0 represent flat (Youssef et al., 2015). 

2.2.2.5.  Plan curvature 

The plan curvature (Fig. 3l) gives information about the convergence and divergence 

of the stream.Therefore, its used in the flood susceptibility mapping. Its derived from the digi-

tal elevation model (DEM). 

2.2.2.6.  Profile curvature 

The profile curvature (Fig. 3j) raster were selected as on of the flood factor due to its 

effect on the flow rate and deceleration. Its derived from the digital elevation model (DEM). 

2.2.2.7.  Distance to roads 

Since the distance from the road is one of the factors that can affect and prevent flood 

events, it is used as one of the factors affecting the flood in this study (Mukherjee & Singh, 

2020; Shafapour Tehrany et al., 2017) . Wide and impermeable to water roads are the most 

suitable grounds for the transportation and accumulation of water in large-scale floods or con-

tinuous rainfall. For this reason, the distance from the road was chosen as a flood influencing 

factor. Distance to roads map was derived using the geographic information system software 

QGIS QuickOSM tool with the extracted Highway-Motorway and Highway-Primary vector 

data obtained from the Open Street Map(OSM). The distance to roads vector shapefile format 

was converted to raster format with appropriate resolution using ArcGIS 10.3 tool and divided 

into six classes as shown in (Fig. 3d). 

2.2.2.8.  Distance to rivers 

Distance to rivers map  was derived using geographic information system(ArcGIS) tools 

with the water course data(gdb) obtained from the General Directorate of Water Management, 

technical spatial data service department. 

https://www.openstreetmap.org/#map=14/47.7852/19.1226
https://www.ovf.hu/en/
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2.2.2.9.  NDVI 

As its name signifies, Normalized Difference Vegetation Index (NDVI) is a factor that 

helps us understand the vitality of trees and vegetation cover on a particular region. The NDVI 

map (Fig. 3g) was prepared by using the Landsat 8 OLI/TIRS Collection 2 Level-2 satellite 

images (Obtained from the USGS Earth Explorer) and is calculated using the equation (1) be-

low: 

The NDVI value range varies from -1 to +1. NDVI values close to +1 represent healthier and 

denser vegetation cover (Arabameri & Pourghasemi, 2019). As the researcher explained in the 

study conducted here (Kumar & Acharya, 2016), NDVI is very effective in flood events due to 

the inverse ratio between flooding and vegetation density. For this reason, NDVI was used in 

the present study as one of the factors applied in machine learning. 

2.2.2.10. Soil 

Soil type can be associated with the concept of water absorption, which the term we use 

when explaining in the distance to roads. For instance, the type of soil also may affects how 

much water is transported during the flood, just as concrete roads do not leak water and are a 

factor in flood formation (Rahmati et al., 2016). In the research paper (Huang et al., 2013) stated 

that, the type of soil surface has an essential part in the infiltration of the water. In addition to 

the water leakage of the soil type, the amount of water accumulated in it is also effective in the 

formation of floods.Therefore, soil type map (Fig. 3k) used as one of the factor affecting the 

flood in the susceptibility mapping.The soil type map was extracted from the vector data which 

downloaded from the Food and Agriculture Organization of The United Nations (FAO) for the 

Hungary study area. 

2.2.2.11. Rainfall 

Rainfall is one of the primary factor affecting flooding used in almost all flood suscep-

tibility mapping studies (Tehrany et al., 2019).In the present study, rainfall map was derived 

using the data obtained (2011-2020) from the Climatic Research Unit (University of East Ang-

lia) and NCAS and calculated using the inverse distance weighting (IDW) method in ArcGIS 

10.3 . In general, while the annual precipitation is more in the southwestern and mountainous 

parts of the country, it decreases towards the middle flat parts and receives around 500 mm of 

annual precipitation. 

               NDVI = (NIR-RED) / (NIR+RED)  (1) 

https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/cc45a270-88fd-11da-a88f-000d939bc5d8
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
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Therefore, the annual precipitation amount is not proportionally distributed among the regions. 

While the spatial distribution of annual precipitation is concentrated in the southwest of the 

country, the great wide plain region received relatively less precipitation (Fig. 3h). The rainfall 

map is divided into 5 classes and the value range varies between 488 mm to 875 mm. 

2.2.2.12. Land Use / Land Cover (LULC) 

Land use is well up on the list as one of the factors affecting flood, due to widely used 

in previous comprehensive studies. The widespread use of land use not only in machine lear-

ning-based flood susceptibility mapping but also in other flood mapping methods and in another 

hazard assesment explains its magnitude (Khosravi, Nohani, et al., 2016; Roccati et al., 2021; 

Tehrany & Kumar, 2018). The land use map ( Fig. 3f) was extracted from the data obtained via 

The Copernicus Land Monitoring Service (CLC 2018) and its classified into five categories. 

2.2.2.13. STI 

Sediment transportation index (STI) layer (Fig. 3p) were generated from digital eleva-

tion model (DEM) using the tools in the ArcGIS 10.3 interface and calculated and prepared 

using the equation (2) below: 

STI =  (As / 22.13)m × sin(B / 0.0896)n (2) 

where m, is the constant value used as 0.6, As is the catchment portion of the region, B is the 

slope layer (classified into quantile categories, used in the present study Fig. 3i) and n is the 

constant value used as 1.3. 

2.2.2.14. SPI 

Stream power index (SPI) is an essential factor in the flood susceptibility mapping as it 

is a measure of flow erosion power and runoff density (Florinsky, 2017).Stream power index 

(SPI) layer (Fig. 3n) were generated from digital elevation model (DEM) using the tools in the 

ArcGIS10.3 interface and calculated and prepared using the equation (3) below: 

                                                           𝑆𝑃𝐼 = 𝑙𝑛(𝐴𝑆
∗ 𝑡𝑎𝑛 𝛽)                                                         (3) 

where AS, is the catchment area (flow accumulation at gridcell) and 𝛽 is the slope (Fig. 3 i) 

layer in radians that used in the present study. 

2.2.2.15. TRI 

Terrain roughness index (TRI), provides information on the roughness ratio of a parti-

cular land surface (Riley et al., 1999). Considering the influence of the ruggedness index to the 

flooding, terrain roughness index have been chosen for the present study . TRI layer (Fig. 3o) 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://jblindsay.github.io/ghrg/Whitebox/Help/SedimentTransportIndex.html
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were generated from digital elevation model (DEM) using the neighborhood tool in the ArcGIS 

10.3 interface and calculated and prepared using the equation   (4) below: 

                                      TRI = (FSmean − FSmin) ∕ (FSmax − FSmin)                                         (4) 

Where 𝐹𝑆𝑚𝑒𝑎𝑛, is the focal statistical mean, 𝐹𝑆𝑚𝑖𝑛 is the focal statistical minimum and 𝐹𝑆𝑚𝑖𝑛 

is the focal statistical maximum of the DEM raster. 

2.2.2.16. TWI 

Topographic wetness index (TWI) is a factor that provides information about topograp-

hic control and is frequently used on hydrological events and in flood susceptibility mapping 

(Sørensen et al., 2006). Due to there is a direct correlation between TWI values and prone to 

flooding, is used commonly in the flood susceptibility mapping. Areas with higher TWI values 

are more inundated areas. (Chen & Yu, 2011). TWI layer (Fig. 3m) were derived from digital 

elevation model (DEM) using the tool in the ArcGIS 10.3 interface and calculated using the 

equation   (5) below:  

                                                          TWI = ln(As ∕ tanβ)                                                         (5) 
 

2.3. Preparation of the dataset and establish of the model 

The flood influencing factors that used in the present study, machine learning algo-

rithms (RF, SVM, LR), separation of the test and training sets, validation technique and sum-

mary of the methodology were represented in  flow chart (Fig. 4) below. These methods were 

comprehensivey explained in the next steps. 
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Fig. 4. Flowchart of the methodology 

 

2.3.1. Detecting the multicollinearity with VIF and Tolerance values 

In the machine learning, before starting the modeling, making the data to the convenient 

format ready for processing and organizing is one of the most important and first things to do. 

Therefore, the similarity and correlation values of the data used in this study were determined. 

Hence, a comprehensive multicullinearity test were applied to the data frame as a first step. The 

multicollinearity test is to detect if there is a high correlation among the two or more indepen-

dent variables in a multiple regression model (Alin, 2010), which is among the data layers for 

our study. A linear relationship that may occur between the factors were used in the present 

study may lead to errors in the machine learning stages, to the confusion matrix, to the regres-

sion coefficients and to the all other parameters which used in the susceptibility mapping. 
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Thus, it will influence adversely the flood susceptibility map accuracy, which is the final 

product of the present study. However, multicollineratery can be eliminated by using the vari-

ance inflation factor (VIF) and tolerance values .The Tolerance values lower than 0.10 and VIF 

values above 10 indicate multicollinearity (Saha, 2017) and at this value range the similarity 

can be eliminate by removing the factors that indicate multicollinearity problems. By applying 

the multicollinearity test, VIF and tolerance values were calculated separately for each value  in 

the python environment (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

As (Table 1) indicates, the VIF value of each independent factor is less than 10 and the 

tolerance value is larger than 0.1 except the curvature factor (Gujarati et al., 2012; Kutner et al., 

2004). The curvature layer shows linearity with the plan curvature and profile curvature factors. 

By removing the curvature layer from the test, the required linearity values were provided. 

2.3.2. Discretization transforms of the continuous features for the machine learning 

Before starting the model building process, we need to make the data set suitable and 

nominal for the analysis. Continuous data is converted into the discrete data in the python en-

vironment with the discretization method. After this stage is completed, the data set is divided 

(a)

(a)

(b)

(b)

Table 1. The multicollinearity analysis, VIF and Tolerance values results. The symbols (a) and (b) indi-

cate that the multicollinearity test results before removing the curvature layer and after removing the cur-

vature layer, respectively. 
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into two as testing and training. Since the statistically input variables are quite complex, disc-

retization had been applied to the datasets. Flood factors that its used in the machine learning 

algorithms are discretized in certain standards, gives more effective performance results. 

Discretization process were implemented by using the “cut” function which is in the 

pandas module. By using that function data layer values can be specify the according to the 

number of bins that we want to create based on the continious data and we can specify the labels 

for each bin according to the quantile classification.  

 

Fig. 5. Graphical representation of the  selected NDVI factor; (a) before the discretization of the data, and (b) 

after the discretization of the data 

The discretization process shown in (Fig. 5) were applied to all other flood factors se-

parately.Thus, after the discretization process, machine learning applications became more 

adaptive and influential compared with the continuous data. 

2.3.3. Training and test sets of the study 

Separation of the model into training and test sets are the first priority in establishing 

the model and obtaining success and accuracy results. In the present study, model were sepa-

rated into two parts,%70 and %30 (Gholamy et al., 2018) as training and test sets, respectively.  

2.4. Machine learning models 

As seen in the flowchart (Fig. 4), flood susceptibility maps studies were carried out with 

three machine learning methods in the present research; support vector machine (SVM), logistic 

regression (LR) and random forest (RF), respectively. 

2.4.1. Support vector machine (SVM)  

One of the most popular models used in flood susceptibility mapping is the support 

vector machine (SVM) (Gudiyangada Nachappa et al., 2020; Tehrany et al., 2019; Tehrany, 

Pradhan, Mansor, et al., 2015). Due to widespread and shared use in the susceptibility mappings 

(a) (b) 
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many times, support vector machine algorithms were selected in the present study to generate 

the flood susceptibility maps as one of the models. Support vector machines are supervised 

learning techniques that are used in classification (Jebur et al., 2014), regression and finding 

outliers, such as evaluated in the present study to estimate the {0} and {1} values for flood 

prediction. The method commonly used in the SVM is the kernel linear mathematical systems 

function together with it were employed for the data transformation and determination in the 

SVM model. The SVM, together with a collection of linear indicator functions, is a commonly 

used machine learning model that has been used to solve function determination problems 

(Vapnik, 1999). SVMs are based on the concept of determining the optimum hyperplane for 

dividing a dataset into two classes (Rustam et al., 2020). The kernel type and related parameters 

that are chosen have a direct influence on SVM productivity and precision. 

2.4.2. Logistic regression (LR) 

Logistic regression has been used to forecast the occurring probability of the natural 

disasters such as landslides and floods (Hosmer Jr et al., 2013). Logistic regression is compa-

rable to multiple linear regression and enables one to make a connection and correlation for 

both flood event (dependent variable) and flood influencing factors (independent variable). Lo-

gistic regression is one of the most used statistical models in the literature to analyse and predict 

natural disasters such as landslides and floods (Yesilnacar & Topal, 2005). The goal of logistic 

regression in flood susceptibility study, which is stated by (Pradhan, 2010), is to find the best 

proper model to reflect the relationship between the dependent (flood inventory map) and in-

dependent (flood influencing factors) variables. 

In the present modeling, the flood occurrence (dependent variable) consists of values {

0} and {1}; where zero values represents the flood points, and one values represents non-flood 

points. The relationship between the dependent variable and other variables is expressed as 

follows (6): 

𝑝 = 1 ∕ (1 + ⅇ−𝑧)       (6) 

Where 𝑝 is the the flood probability index (Bai et al., 2012), explained as flood occurrence 

values varying between 0 and 1. In the equation (7) shown below, z is the linear regression. The 

logistic regression method tries adapting the data to an equation with the following explanation: 

                                             𝑧 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2+⋯ … + 𝑏𝑛𝑥𝑛  (7) 
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Where 𝑏0  is a fixed value representing the method's intercept and the logistic regression co-

efficients are denoted by 𝑏𝑛, while the flood affecting factors (slope, rainfall, STI, TRI, etc.) 

are denoted by 𝑥𝑛. 

2.4.3. Random forest (RF) 

The Random Forest (RF) technique is an ensemble of the decision trees used to predict 

categorization or regression. RF has attracted increased interest in recent studies because of its 

potential to generate great classification and categorization results as well as its processing 

speed (Du et al., 2015). When predicting the product, a random set of characteristics is chosen 

at each stage, and each production is weighted by the value generated from the votes received. 

The majority vote, depending on the results of evaluated decision trees, leads to a single final 

categorization decision tree. In the flood susceptibility mapping, RF is one of the most impor-

tant non-parametric ensemble learning approaches (Criminisi & Shotton, 2013; Ghorbanzadeh 

et al., 2019). 

3. Results of the application and discussion 

As a result, in the present study, 16 factors were analyzed, and their effects on flooding 

were tested. As mentioned earlier, these factors are namely elevation, aspect, slope, curvature, 

plan curvature, profile curvature, soil type, distance to roads, distance to rivers, NDVI, LULC, 

rainfall, STI, SPI, TRI and TWI. Among these factors, the curvature layer, which shows simi-

larity according to the results of the multicollinearity test (Table 1), was excluded from the 

modelling. Hereupon, the flood influencing layers were classified with quantile classification 

in order to better analyze the flood susceptibility maps (Tehrany et al., 2019; Umar et al., 2014). 

The influence of these remaining 15 factors on the probability of flooding was tested using three 

different machine learning algorithms. These factors are support vector machines (SVM), lo-

gistic regression (LR), and random forest (RF).  

3.1. Flood susceptibility map produced using SVM 

Support vector machine (SVM) was implemented using the linear kernel parameter 

among four kernel types as LN, PL, RBF and SIG, and flood susceptibility maps were produced 

in the GIS environment by transferring the weight coefficients obtained from jupyter notebook 

to ArcGIS 10.3 interface. As Fig. 6 indicate, feature importance is ordered from largest to smal-

lest according to weighting coefficient. Thus, according to SVM, the least influential parame-

ters in Table 2 were profile curvature, plan curvature, and distance to roads, whereas the most 

influential ones were elevation, slope, and rainfall. 
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         Fig. 6. Bar graph representation of the factors affecting flood based on SVM 

 

Table 2. Calculated weight coefficients based on SVM 

 

The mathematical multiplication of the rescaled layers affecting the flood, and the we-

ight coefficients calculated using the support vector machine, were made in the ArcGIS envi-

ronment and shown in the following equation: 

 𝑆𝑉𝑀 =  (0.295599 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ𝑇𝑜𝑅𝑖𝑣ⅇ𝑟𝑠) + (0.228614 ∗ 𝑆𝑙𝑜𝑝ⅇ) + (0.095927 ∗
                 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙) + (0.076212 ∗ 𝑇𝑊𝐼) + (0.076025 ∗ 𝐿𝑈𝐿𝐶) + (0.065463 ∗
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                 𝐸𝑙ⅇ𝑣𝑎𝑡𝑖𝑜𝑛) +  (0.036954 ∗ 𝑁𝐷𝑉𝐼) + (0.030885 ∗ 𝑇𝑅𝐼) + (0.024768 ∗
                 𝑆𝑜𝑖𝑙𝑇𝑦𝑝ⅇ) + (0.022766 ∗  𝑆𝑃𝐼) + (0.015598 ∗ 𝑆𝑇𝐼) + (0.014308 ∗
                 𝐴𝑠𝑝ⅇ𝑐𝑡) + (0.009617 ∗  𝑃𝑟𝑜𝑓𝑖𝑙ⅇ𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟ⅇ) + (0.005947 ∗
                 𝑃𝑙𝑎𝑛𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟ⅇ) + (0.001316 ∗  𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ𝑇𝑜𝑅𝑜𝑎𝑑𝑠) 

 

(8) 

 

The final result SVM raster was derived from the equation above (8) by multiplying the 

each layer’s raster images with the weight coefficients. After that, the generated raw flood sus-

ceptibility raster image was categorized into five vulnerable regions with the following area 

percentages for each class as shown in the Fig. 7; very high (%21.79), high (%28.92), moderate 

(%26.52), low (%16.60), and very low (%6.17). 

 

Fig. 7. Flood susceptibility map produced using SVM 

3.2. Flood susceptibility map produced using LR 

LR modelling was prepared using the Jupyter Notebook platform and LR coefficients 

(Table 3) were calculated separately for each flood influencing factor in the Jupyter environ-

ment. 
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                  Fig. 8. Bar graph representation of the factors affecting flood based on LR 

As Fig. 8 and Table 3 indicate, low LR weight values represent the factors that have a 

more negligible effect on flood occurrence, while the high-value weight coefficients represent 

the factors that have more influence on flood occurrence. Thus, in the present study, distance 

to roads, plan curvature, profile curvature and STI have the lowest weights, while distances to 

rivers, slope and elevation factors have the highest weights. 

 

Table 3. Weight coefficients based on LR 



22 
 

The mathematical multiplication of the rescaled layers affecting the flood, and the we-

ight coefficients calculated using logistic regression model, were made in the ArcGIS environ-

ment and shown in the following equation: 

𝐿𝑅 =  (0.375889 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ𝑇𝑜𝑅𝑖𝑣ⅇ𝑟𝑠) + (0.162576 ∗ 𝑆𝑙𝑜𝑝ⅇ) +      
           (0.086731 ∗ 𝐸𝑙ⅇ𝑣𝑎𝑡𝑖𝑜𝑛) + (0.067276 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙) + (0.067229 ∗ 𝑇𝑊𝐼) + 

           (0.053899 ∗ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝ⅇ) + (0.050703 ∗ 𝐿𝑈𝐿𝐶) + (0.030027 ∗ 𝑇𝑅𝐼) + 

           (0.025333 ∗ 𝑆𝑃𝐼) + (0.020439 ∗ 𝐴𝑠𝑝ⅇ𝑐𝑡) + (0.017969 ∗ 𝑁𝐷𝑉𝐼) + 

           (0.014564 ∗ 𝑆𝑇𝐼) + (0.009413 ∗ 𝑃𝑟𝑜𝑓𝑖𝑙ⅇ𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟ⅇ) + 

           (0.009384 ∗ 𝑃𝑙𝑎𝑛𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟ⅇ) + (0.00856 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ𝑇𝑜𝑅𝑜𝑎𝑑𝑠) 

 

 

(9) 

 
 

The final result SVM raster was derived from the equation above (9) by multiplying the 

each layer’s raster images with the weight coefficients. After that, the generated raw flood sus-

ceptibility raster image was categorized into five vulnerable regions with the following area 

percentages for each class as shown in the Fig.  9; very high (%21.16), high (%24.91), moderate 

(%25.62), low (%16.27), and very low (%12.04). 

 

Fig.  9. Flood susceptibility map produced using LR 
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3.3. Flood susceptibility map produced using RF 

 

                   Fig. 10. Bar graph representation of the factors affecting flood based on RF 

 

Table 4. Weight coefficients based on RF 

Based on the Table 4 results, with a value of 0.260197, the distance to rivers is the 

highest and most essential factor affecting the flood, as in the other two models. The mathema-

tical multiplication of the rescaled layers affecting the flood, and the weight coefficients calcu-

lated using random forest (RF), were made in the ArcGIS environment and shown in the fol-

lowing equation: 
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𝑅𝐹 = (0.260197 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ𝑇𝑜𝑅𝑖𝑣ⅇ𝑟𝑠) + (0.150996 ∗ 𝑆𝑙𝑜𝑝ⅇ) + 

          (0.144734 ∗ 𝐿𝑈𝐿𝐶) + (0.121298 ∗ 𝐸𝑙ⅇ𝑣𝑎𝑡𝑖𝑜𝑛) + (0.074753 ∗ 𝑆𝑜𝑖𝑙) + 

          (0.060781 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙)  + (0.046948 ∗ 𝑇𝑊𝐼) + 

          (0.033589 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ𝑇𝑜𝑅𝑜𝑎𝑑𝑠) + (0.021825 ∗ 𝑇𝑅𝐼) + (0.018312 ∗ 𝑁𝐷𝑉𝐼) 

          +(0.017510 ∗ 𝑆𝑃𝐼) + (0.017504 ∗ 𝐴𝑠𝑝ⅇ𝑐𝑡) + (0.013574 ∗ 𝑃𝑙𝑎𝑛𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟ⅇ) 

          +(0.011742 ∗ 𝑃𝑟𝑜𝑓𝑖𝑙ⅇ𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟ⅇ) + (0.006238 ∗ 𝑆𝑇𝐼) 

 

 

 

(10) 

 

 

 

The final result RF raster was derived from the equation above (10) by multiplying the 

each layer’s raster images with the weight coefficients. After that, the generated raw flood sus-

ceptibility raster image was categorized into five vulnerable regions with the following area 

percentages for each class as shown in the Fig. 11; very high (%16.85), high (%27.88), moder-

ate (%26.46), low (%19.80), and very low (%9.01). 

 

Fig. 11. Flood susceptibility map produced using RF 
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Fig. 12. SVM Confusion Matrix and other performance metrics 

3.4. Validation of the flood susceptibility maps 

In the machine learning, performance measurement is a critical issue.In the present 

study, a flood prediction ratio of performance appraisal values was produced using the training 

dataset to evaluate the performance and the testing dataset for validation for each of the three 

machine models. AUC is one of the most essential evaluation criteria for classification model 

performance used in the literature (Tien Bui et al., 2018). Therefore, as a result, the receiver 

operating characteristic (ROC) curve and area under curve (AUC), was utilized to assess the 

flood susceptibility map's performance. 

        precision    recall  f1-score   support 

             0              0.97      0.95       0.96           97 

             1              0.96      0.98       0.97          134 

      Accuracy                                   0.97          231 

    macro avg        0.97      0.96       0.96          231 

weighted avg        0.97      0.97      0.97          231 

        

accuracy SVC:  0.9653679653679653 

precision SVC:  0.9632352941176471 

recall SVC      :  0.9776119402985075 

f1 score SVC  :  0.9703703703703703 

 

 

                      precision    recall  f1-score   support 

             0              0.98      0.95       0.96           97 

             1              0.96      0.99       0.97          134 

      Accuracy                                   0.97          231 

    macro avg        0.97      0.97       0.97          231 

weighted avg        0.97      0.97      0.97          231 

 

accuracy LR:  0.9696969696969697 

precision LR:  0.9635036496350365 

recall LR      :  0.9850746268656716 

f1 score LR  :  0.9741697416974171 

 

 

 

 

Fig. 13. LR Confusion Matrix and other performance metrics 
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                      precision    recall  f1-score   support 

             0              0.98      1.00       0.99           97 

             1              1.00      0.99       0.99          134 

      Accuracy                                   0.99          231 

    macro avg        0.99      0.99       0.99          231 

weighted avg        0.99      0.99      0.99          231 

          

accuracy RFC:  0.9913419913419913 

precision RFC:  1.0 

recall RFC      :  0.9850746268656716 

f1 score RFC  :  0.9924812030075187 

 

 

 

Fig. 15. ROC curve plotting of the SVM, LR and RF models 

ROC is a probability curve, and AUC represents the degree or measure of separability. 

AUC represents the degree or measure of separability, whereas ROC is a probability curve 

(Davis & Goadrich, 2006). As indicated in Fig. 15, the ROC curve is depicted in two dimensi-

ons, with the false positive rates (specificity) on the x-axis and true positive rates (sensitivity) 

on the y-axis. ROC curves of the created integrative models during the learning and validation 

phases, with the red curve indicating the logistic regression (0.993) AUC value, the green curve 

representing the support vector machine(0.993) AUC value, and the blue curve representing the 

random forest (0.999) AUC value. Based on these findings, it can be stated that the RF approach 

was the most accurate way for producing flood susceptibility maps in Hungary, as it had the 

Fig. 14. RF Confusion Matrix and other performance metrics 
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greatest area under the curve and the highest value of accuracy (0.999) among the other two 

methods. 

4. Conclusion 

Flood is one of the most dangerous and destructive natural disasters globally. Therefore, 

the production of flood susceptibility maps plays an essential role in making provisions against 

flood hazards. 16 flood influencing factors, namely distance to roads, aspect, curvature, stream 

power index (SPI), elevation, distance to rivers, land-use/cover (LULC), normalized difference 

vegetation index (NDVI), rainfall, terrain roughness index (TRI), slope, profile curvature, soil 

type, topographic wetness index (TWI), plan curvature, and sediment transport index (STI), 

were used in the present study, along with three machine learning models, support vector mac-

hine (SVM), logistic regression (LR), and random forest (RF) for modelling and produce flood 

susceptibility maps in Hungary. Multicollinearity tests (VIF) and Tolerance methods were used 

to measure the relevance of these 16 Flood influence factors. However, the curvature layer was 

excluded from the study because it showed multicollinearity and the remaining 15 factors were 

used. The accuracy of the models and flood susceptibility maps based on the training and vali-

dation datasets was determined using the ROC curve and AUC. The application of the ROC 

Curve in the validation stage demonstrates that, in comparison to other techniques, the Random 

Forest model results have the best  AUC performance with the 0.999. The other two models, 

SVM and LR, showed the same performance with an AUC value of 0.993. 

In conclusion, the approach of all flood susceptibility mapping models was satisfactory 

and dependable. According to the SVM model, an overall area of 21.79 percent was considered 

severely prone to flooding. In addition, 28.92% of the areas were classified as high-risk, 26.52% 

of them as moderate-grade, 16.60% of them as low-grade, and 6.17% of them as very low flood 

susceptibility based on the SVM model results. For RF and LR, these numbers show the pro-

portion of places prone to flooding, with a ratio of 16.85% extremely high, 27.88% high, 

26.46%  moderate, 19.80% low, 9.01% very low, and 21.16% very high, 24.91%, 25.62% mo-

derate, 16.27% low, 12.04% very low, respectively.  

Although, in the literature, there are previous studies for the flood mappings, such as a 

neural network approach in Hungary (Skakun, 2010), the research with complex and effective 

machine learning methods was implemented for the first time in the present study. In conclu-

sion, strategies and flood susceptibility maps proposed here might be useful in disaster mana-

gement, guiding emergency plans and to the relevant institutions and organizations. 
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