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ABSTRACT 

Mineral resources play a significant role in improving the financial situation. Hence for the 

successful identification, exploitation, and exploitation of the minerals, there is a need to identify 

the location of these minerals. However, remote sensing techniques such as satellite images are 

proven reliable methods for exploring these minerals, especially in complex terrain regions.  

This study aims to use remote sensing applications in a geological study by developing a technique 

that can be used to explore the Cenozoic ferruginous sediments in the Al Kufrah Basin, Libya 

using Sentinel-2 bands. The bands were subjected to various image processing techniques that 

resulted in choosing false-color composite (FCC) of the band (12-8-3) to enhance lithology, band 

ratio images of (4/2-11/8-11/12) for iron deposits, Principal Components Analysis (PCA) and 

unsupervised classification (K-mean and Iso-data) helped identify different lithologies. Lithologic 

maps and the ferruginous sediments identified by image processing techniques agree with 

geological maps.  

The iron concentrated ferruginous sediments are widely spread from less to high concentrations 

toward the NE of the study area. Given the spread of the sediments, the iron deposit may extend 

beyond the sand-covered area. The study can improve a new potential map of iron ore deposits in 

a new location. 

Keywords: Sentinel-2, Ferruginous sediments, Iron, Image Analysis, Libya 
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CHAPTER ONE: INTRODUCTION              

1.1 Research Background 

Deserts exist on every continent and cover more than 30% of the Earth’s land surface. The Sahara 

Desert is one of the biggest deserts in the world, which has undergone major hydrological 

fluctuations and was vegetated in the past. When the wet time frames finished at about 5.5 ka, the 

Sahara had changed into a hyper-arid desert, and its unique surface and alluvium-filled valleys and 

lake basins were covered with windblown sand sheets and dune fields (E. Ghoneim et al., 2012). 

Although they typically do not have many inhabitants, they are often the loci of economic and 

cultural activity. 

Notably, mineral resources play a significant part in the practical financial improvement of nations. 

Nonetheless, the distribution of a mineral resource varies in geological settings and requires 

exceptionally efficient discovery techniques. Identifying the indicators of geological structures is 

important in exploring and exploiting resources in Libya. The size, remoteness, and harsh nature 

of many of the country’s deserts make it difficult and costly to map or monitor these landscapes 

on the ground. Innovation in spatial techniques is required for mapping geological features which 

face many social and environmental constraints (Ibrahim et al., 2018).    

Mohamed et al. (2021) agree that remote sensing is more cost-effective, and data can be collected 

on a large scale at regular intervals, which opened an era of lithological mapping by means of 

remote sensing. The significant expense associated with the investigation of mineral resources by 

conventional methods influences the economic returns of mining. Remote sensing is a significant 

tool for the initial recognition of structures, especially in regions that are comprised of a similar 

rock as the surroundings, which adds to the decrease of cost and time during prospecting fieldwork 

(Ghoneim, 2018; Koeberl et al., 2005). 

Geologists have conducted mineral mapping and lithological unit discrimination using satellite 

acquired data that show successful discrimination results from Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) sensors over Landsat Thematic Mapper (TM), 

Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) (Tangestani et al., 

2008). However, there is a need to investigate the performance and efficiency of recent satellites 

such as Sentinel-2 in compiling geologic and lithologic maps (Tangestani & Shayeganpour, 2020). 
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This will bring in new knowledge on the variance of results and provide the basis for comparing 

the accuracy of identifying geological deposits on the Earth’s surface. 

Several remote sensing techniques have been carried out for geological and structural mapping in 

the Sahara region. Also, remote sensing studies have been done around Al Kufrah Basin (e.g. E. 

M. Ghoneim, 2009; Schmieder et al., 2009; Albert et al., 2016, Alasta, 2011, Abulghasem et al., 

2012). These investigations have been done based on Landsat ETM+, dual-band (L and C) and 

dual-polarization (HH and HV) radar (SIR-C), and SRTM data. Lithological classification using 

Sentinel-2, ASTER, and OLI data has been carried out also in other parts of the world, such as the 

Gobi Desert in China and the Central Iranian Volcanic Belt (CIVB) (Ge, W et al., 2018; Khaleghi 

et al., 2020) 

A study to examine prospects of carbonate-hosted Pb-Zn minerals was done in the central Iranian 

terrain using Sentinel-2 (bands 2, 3, 4, 11, and 12), ASTER (VIR+SWIR bands), and Landsat-8 

(OLI bands) images while utilizing Principal Component Analysis (PCA) (Sekandari et al., 2020). 

Principal components represent relevant substances’ spectral responses and mineral spectral 

information (El Atillah et al., 2019). Hydrothermal alteration zones were mapped using infrared 

bands of (0.45-1.0 µm) for OLI and Sentinel-2 images, while ARSET used a wavelength of 1.65 

and 2.43 µm (Khaleghi et al., 2020). The study further states that mapping results for iron oxide 

minerals were better for Sentinel-2 images than ARSET and OLI data. Moreover, Mielke et al. 

(2014) found that Sentinel-2 sensors were better equipped for iron depth measures than current 

multispectral sensors.  

Image classification techniques are divided into three types: unsupervised image classification, 

supervised image classification, and object-based classification (GISGeography, 2021). 

Unsupervised classification uses algorithms such as K-means and ISODATA to generate Iso 

clusters and classify the clusters. Supervised classification uses training sites or samples to classify 

the image. Object-Based Image Analysis (OBIA) uses segmentation algorithms and groups pixels 

to create objects with a vector shape. 

El Atillah et al., 2019 concluded that Sentinel 2A, Landsat 7 and 8, and ASTER images provide 

good mapping results for lithology and mineralogical alteration while using unsupervised 

classification. This study utilized K-means, Isodata, thresholding, watershed, efficient graph-based 
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image segmentation, and algorithms for geological mapping. However, it was concluded that the 

K-means and Isodata algorithms were the best for lithological discrimination.  

Prediction of iron oxides and clay minerals was made using Sentinel 2 images while computing 

band ratios, RGB combinations, principal component analysis (PCA), and image classification 

(Cardoso-Fernandes, J., Teodoro, A., & Lima, 2018). In the RGB combination, the clay and 

carbonates have a reflectance of 1.55 to 1.75 μm and absorption of 2.1 to 2.4 μm, while iron oxides 

and sulphate minerals have a high reflectance in near-infrared and low blue reflectance. The study 

used a band ratio of 4/2 to map iron oxides because of absorption features in band 2 (blue) and 

high reflectance in band 4 (red). Image analysis was applied on PCA for all six bands.  

Bas Draa inlier lithological units mapping was done using ASTER and OLI data, and the image 

classification utilized PCA, band ratio (BR), and Support Verctor Machine (SVM) (Adiri et al., 

2016). PCA and BR results showed excellent correlation with available geological of the area with 

a high Kappa coefficient accuracy. This study concluded that BRs and PCA gave good results than 

SVM classification. 

1.2 The Study Area 

The materials processed in the present study were collected during a scientific project started in 

2008 by Industrial Research Center, Libya, and ErPetro Ltd. Hungary under the contract of 

“Scientific and technical cooperation in geological mapping Al Kufrah Basin.” The project aimed 

to compile twelve geological maps at a scale of 1:250,000 covering the Kufrah Basin (Albert et 

al., 2016). The details of the map sheet are explained in table 3. The expedition revealed proof of 

a Tertiary geological formation containing sedimentary Iron (laterite). 

By using multispectral satellite image classification, iron-containing surface materials can be 

revealed (Van der Meer et al., 2014; Albert & Ammar, 2020). Multispectral datasets, like Landsat 

Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) have been used to 

discriminate and interpret various lithology and structures (Loughlin, 1991; Liu et al., 2007) for 

several years; other multispectral sensors such us Advanced Space bone Thermal Emission and 

Reflection (ASTER) were also used for surface mapping. 

The presence of excellent exposure with less vegetation cover makes the use of remote sensing 

technique for the identification of geological features in Libya, to be specific in the study area (Al 
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Kufrah Basin). This study aims to use remote sensing data in a geological study by applying a 

technique that can be used in the exploration of ferruginous sediments. Moreover, the study aims 

to identify minerals and will help to assess the use of multispectral datasets and spectral signatures. 

1.3 General Objectives 

The thesis aims to analyze satellite images of the study area to identify the known - and supposed 

- occurrence of the Early and Late Cenozoic continental sediments. The work includes building a 

geodatabase of the mapped (known) occurrences based on the maps of the joint Libyan-Hungarian 

expedition, the analysis of satellite images, and the unsupervised classification of the images. The 

main objectives are listed below. 

• Identify and mapping of the ferruginous concentrated iron sediments associated with the 

deposit in the Al Kufrah Basin.  

• Characterize spectral reflectance of the different geologic features, validate the map with 

the satellite image result and execute the unsupervised classification on remotely sensed 

data. 

• Evaluate the effectiveness and accuracy of unsupervised classification techniques in 

geologic investigations. 

1.4 Thesis organization 

This thesis is prepared as a chain of connected chapters. After a short introduction in Chapter one, 

the geologic setting and remote sensing with prior information in the area are defined in Chapter 

two. Collected data and several image processing techniques applied are detailed in Chapter three. 

The result of the ferruginous sediments and lithology are discussed in Chapter four. The 

conclusions drawn collectively with suggestions are eventually presented in Chapter five. 
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CHAPTER TWO: GEOLOGIC SETTING AND REMOTE SENSING 

2.1. Geologic Setting 

 

Figure 1. Location map of the study area in RGB (12-8-3) of Sentinel-2 bands 

 



6 
 

The study area lies between latitudes 19º00’ and 25º00’ 20º00’ N, longitudes 21º00’ and 25º00’ E, 

and is roughly 173 000 square km in size characterized by vast, low relief that gently dipped to the 

North. Figure 1 shows the area of interest is the Al Kufrah Basin, Libya, which covers various 

lithologies, including Quarat al Hamra Formation, Al Jawf Formation, Eolian sediments, Playa 

sediment, Serir and Gravity driven deposits (Table 7). More than a decade ago, a joint Libyan-

Hungarian expedition identified characteristic Cenozoic sediments within the area, which were 

previously unknown and named Idris formation (CzI), and undivided Cenozoic continental 

sediments (Czc). The majority of the Al Kufrah Basin was occupied by continental environments 

during the Paleogene and Neogene periods. Instead of forming in rivers, as they did in the 

Mesozoic, the sedimentary units of this period originated in paludal environments, and they were 

only preserved in small-scale subsiding basins that subsequently reversed geographically. The 

Cenozoic sediments are primary and secondary (redeposited) remnants of tropical soils developed 

on the Mesozoic sandstone surfaces in the early Tertiary. Those ferruginous sediments 

accumulation was observed NE and SE of the study area surrounded by early deposits of sand and 

silt sediments. The laterite and the high iron content are the most characteristic in these sediments, 

and these are also the most detectable lithological features on the multispectral images. The Idris 

formation is characterized by locally redeposited, in situ weathering product, laterite, duricrust, 

ferruginous sediments, and the Cenozoic continental sediments are characterized by locally 

cemented, gravel, rock debris, sand, silt, ferruginous sediment. The Al Kufrah Basin, in general,  

covers various lithology (after Albert et al., 2016). 

2.2. Remote sensing in geological exploration 

RS techniques have typically played an essential part in geologic exploration because they’re 

practical methods of measuring many relevant physical properties of large, inaccessible areas 

(Colwell, 1983). Remote sensing is the handiest far-flung exploration technique that maps the 

broad range of alteration minerals related to many ore deposits (Agar & Coulter, 2007). Geological 

mapping is evolving from the conventional field survey to the use of remote sensing technologies 

(Abdunaser, 2015). Remote sensing from space offers a unique opportunity to study the desert 

environment on a regional basis because climatic conditions are nearly always favorable to 

monitoring from space (Y. E. Abdelhady, 1978). Satellite and airborne multispectral or 

hyperspectral sensors were substantially used to assess numerous lands, sea, and atmospheric 

features  (Memarsadeghi et al., 2003; Ciampalini et al., 2013).  
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Remote sensing records are used for mineral exploration to map geology and structures using their 

spectral signature. The visible and near-infrared wavelengths and the shortwave infrared region 

are frequently utilized in geological applications. The band used is decided based on the spectral 

signature of the rocks. 

The reflection spectra of rock are determined by its mineralogical composition. Mineral absorption 

of electromagnetic waves in the visible and short-wavelength infrared is affected by chemo-

electronic and vibrational processes induced by the molecular structure. Weathering of minerals 

produces ferrous iron (Fe2+), which makes absorption troughs at 0.45, 1.0–1.1, 1.8–1.9, and 2.2–

2.3 micrometer. The ferric iron (Fe3+) has absorption troughs at about 0.65 and 0.87 micrometers, 

as shown in figure 2  (Abrams et al., 1988; Rajendran et al., 2011). 

 

Figure 2. Offset spectral plots of major iron minerals from the USGS mineral spectral 
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Geological features can be detected using remote sensing data such as satellite and radar images, 

especially where the vegetation cover is sparse (Van der Werff & van der Meer, 2016; Albert & 

Ammar, 2020). The multispectral images can be used in the classification of the surface, and based 

on the applied band calculations, different features can be outlined, enhanced, or subverted. The 

detectable geological features are usually expressed as abrupt and characteristic lithological 

changes and may identify most often as sedimentary layer boundaries, prominent beds, intrusions, 

or tectonic lines.  

Image classification techniques for geological mapping depend on the type of mineral being 

investigated. A comparison of multispectral data imagery classification accuracy showed that the 

Sentinel-2 result was 74.5%, which was 5.8% and 2.5% higher than OLI and ASTER images, 

respectively (Ge, W et al., 2018).  Mielke et al. (2014) concluded that the mean accuracy for iron 

absorption mapping of mine waste minerals was Sentinel-2 94.5%, OLI 92%, ASTER 88.5%, and 

ETM+ 83%. This is evidence that the Sentinel sensor has a high accuracy compared to the other 

sensors listed. Cardoso-Fernandes et al. (2018) concluded that Sentinel-2 data is a good source of 

data for mineral exploration. 

Sentinel 2-A data is theoretically suggested to be more advantageous in lithological classification 

than Landsat and ASTER images due to its higher spatial and spectral resolutions (Tangestani & 

Shayeganpour, 2020). The fine spectral resolution of Sentinel-2 images in the SWIR region (75–

242 nm) and in the visible and near-infrared (VNIR) region (18–145 nm) makes it suitable for 

geological analysis and mapping. Sentinel-2 also has a super-spectral design which provides VNIR 

narrow bands that allow for iron absorption at 0.9 µm wavelength (van der Werff & van der Meer, 

2015). 

 Furthermore, the satellite images fully cover the Earth with a spectral resolution of 13 bands and 

spatial resolution of 10m, 20m, and 60m with a swath width of 290 km, which is larger than 

Landsat and SPOT (European Space Agency, 2022). They are also freely available online, making 

conducting research with them conducive. A summary of the bands, swath width, and spatial 

resolution of Landsat 8 (OLI), ASTER, and Sentinel-2 are given in table 1 below (Van der Meer 

et al., 2014; van der Werff & van der Meer, 2016; Khaleghi et al., 2020). 
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Table 1. Characteristics of ASTER, Landsat 8, and Sentinel-2 data 

Characteristic Landsat 8 (OLI) ASTER Sentinel-2A 

Bands      11 14 13 

Swath width (km)                    185 60 290 

Spatial resolution          VNIR 30m 15m 10m, 20m, 60m* 

SWIR 30 30 20 

TIR 100 90 - 

PAN 15 - - 

*10m (B2, B3, B4, B8); 20m (B5, B6, B7, B8a); 60m (B1 and B9) 

Iron ore makes up about 8% of the Earth’s crust; hence it’s relatively abundant on the Earth’s 

surface. Specific wavelengths have been suggested for proper mapping of iron ore using satellite 

images on the Earth’s surface. Vincent (1997) noted that ferric (Fe3+) and ferrous (Fe2+) iron ions 

in iron oxides and mafic silicates, hydroxyl (OH-1) ion in hydroxides and clays, H2O in hydrated 

minerals, the carbonate CO3-2 ion in carbonate minerals, and the sulfate SO4-2 ion in sulfate 

minerals absorb light at a different wavelength. Depending on the lattice environment Ferrous iron 

(Fe2+) produces absorption centered around 0.45 µm, 1.0–1.1 µm, 1.8–1.9 µm, and 2.2–2.3 µm 

wavelength, while Ferric iron (Fe3+) produces absorptions of wavelength between 0.65 µm, and 

0.87 µm (El Zalaky M.A et al., 2018).  

Different image analysis techniques have been used for feature extractions in remote sensing. PCA 

is widely used in feature extraction methods. This technique builds new spatial representations for 

spectral bands using an inter-band covariance matrix (Marrakchi et al., 2021). And different types 

of image classification methods have been used in various geologic studies; Ge, W et al. (2018) 

supervised the classification of 15 lithological units using machine learning methods such as 

Artificial Neural Network (ANN), K- Nearest Neighbors (K-NN), Maximum Likelihood Classifier 

(MLC), Support Vector Machine (SVM), and Random Forest Classifier (RFC) which are 

supervised classification methods. MLC and SVM methods showed similar and better results than 

K-NN, ANN, and RFC techniques for geological mapping. Nivedita Priyadarshini et al. (2018) 

further support this by stating that the MLC has a high accuracy of 89.30% for supervised 

classification. Supervised classification using Land Cover Signature Classification (LCS) and the 

Maximum Likelihood was performed on six PCs to map iron oxide and clay minerals (Cardoso-

Fernandes et al., 2018). El Atillah et al. (2021) note that there is great capacity for geological 

discrimination and segmentation using unsupervised classification techniques such as K-Means 

and Isodata algorithms, which yield similar image classification results. On the other hand, Aydda 
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et al. (2020) concluded that the Iso Data unsupervised classifier showed high performance when 

detecting barchan dunes over K-Means, Expectation-Maximization (EM).  

2.3. Image Analysis Techniques 

2.3.1. Band Ratio (BR) 

Band ratio is an image enhancement technique that results by dividing one spectral band by 

another; it produces an image that provides relative band intensities. Band ratios play a crucial role 

in separating mineral varieties and vegetation density by amplifying the coefficient of reflection 

divergences between the required bands while subduing the effects of topography and brightness 

(Abrams et al., 1983). This raised discrimination is a result of the fact that ratio images distinctly 

constrain the variations in the slopes of the two spectral reflectance curves bands involved, 

irrespective of the absolute reflectance values discovered in the bands (Lillesand et al., 2004). 

Table 2. Sentinel-2A MSI and Landsat-8 OLI band ratios, as an analogue of Kalinowski and 

Oliver’s (2004) ASTER band ratios used as proxies for mapping mineralogy (After Van der Meer 

et al., 2014, later modified by van der Werff & van der Meer, 2016) 

 



11 
 

Multispectral remote sensing research requires analysis of band ratios, especially in geological 

mapping of different minerals (Yamaguchi, 2001). According to the band ratio, in one band, the 

mineral has higher reflectance characteristics, while in another band, the same mineral has high 

absorption characteristics (Kalinowski & Oliver, 2004). Several band ratios are proposed for 

Sentinel-2 to derive the following products: ferric iron, ferrous iron, laterite, gossan, ferrous 

silicate, and ferric oxides (Van der Meer et al., 2014). The modified band ratio for mineralogical 

mapping is seen in table 6. 

2.3.2. False Color Composite (FCC) 

False-color composite (FCC) images are representations of multispectral images produced with 

bands aside from visible red, green, and blue as the display’s red, green, and blue components. 

False-color composites allow us to see wavelengths that are invisible to the naked eye (i.e., near-

infrared and beyond). Using bands such as near-infrared emphasizes spectral variations and 

improves the data’s interpretability. False-colored composites come in a variety of colors and can 

be used to spotlight various features. 

For displaying a false-color composite (FCC), we need to select three spectral bands or ratio 

images based on the known reflectance or absorption feature of a mineral. As penetration intensity 

is a function of geologic materials and different polarization modes, the combination of different 

bands as Red, Green, and Blue (RGB) provides direct but qualitative information about different 

geological materials in the subsurface (Van Gasselt et al., 2017). A false-color composite image 

of bands 7, 4 & 1 in the RGB using linear contrast enhancement was used for ETM+ bands (A. 

Ali, 2012); he as well created a false-color band ratio combination of 5/7, 3/1, 3/5 (after Sabin’s 

ratio) as RGB. E. Ghoneim, 2018 uses an RGB color composite image of Sentinel -1 to reveal the 

morphology of a large part of the Rimaal (Sand) structure concealed beneath the Sahara Aeolian 

sand eastern part of Sahara. The eight bands were subjected to various statistical analyses, which 

resulted in the selection of Multispectral Landsat ETM+ data bands (7, 4, and 2) assigned to red, 

green, and blue, respectively, for iron deposits in Wadi Shati, Libya (Abulghasem et al., 2012). 

Fuzzy logic modeling was used to create RGB false-color-composite from bands 2, 8, and 12 for 

Sentinel-2, bands 2, 5, and 7 for Landsat-8, and bands 6, 2, and 8 for ASTER images for showing 

the lithological units having spectral features related to Fe3+ and Fe3+/Fe2+ iron oxides and clay 

and carbonate minerals (Sekandari et al., 2020). 
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2.3.3. Principal Component Analysis (PCA) 

Principal Components Analysis (PCA) is an ordination approach that takes a variable dataset and 

reorients it in such a way that the axis of greatest variance becomes the first principal component 

(PC), and the axis of second-greatest variance becomes the second PC, and so on (Gazley et al., 

2015). PCA is used to enhance and separate spectral signatures from the background and identify 

qualitative differences in lithology (Salehi et al., 2019). This is done by identifying large amounts 

of variation in the data and creating new uncorrelated components. Richards & Xiuping (1999) 

found that the first principal component (PC) band has the most variance, the second PC band has 

the second-highest variance, and the last PC band has the lowest variance and the highest noise 

(Oppenheimer, 2000). PCA selects principal components (PC), which are uncorrected linear 

variables, and uses orthogonal transformations (Richards, 2013).  

The use of the PCA technique for alteration mapping has gotten a lot of attention. To extract 

mineral information from multispectral data, PCA can be used (Crósta, A. P., Moore, 1989; 

(Loughlin, 1991). Chen et al., 2017 used the PCA approach to extract ferrous and hydroxyl 

modifications from Sentinel-2 data. And for Gossan Index Minerals (GIM), such as hematite, 

jarosite, and goethite mapping, the principal component analysis (PCA) method was used to 

enhance interest targets by reducing spectral tendencies and noise components, thereby creating 

images and new PCs based on band ratio and combination (Masoumi et al., 2016; Khaleghi et al., 

2020). Salehi et al. (2019) further indicated that lithological units are best discriminated using 

bands with large data variance. This method has yielded effective results in mineral exploration 

and geological discrimination results ((El Atillah et al., 2019). PCA has also been utilized with 

multispectral data by several academics (Mia, B., Fujimitsu, 2012; Gabr, S., Ghulam, A., 2010; 

Ghulam, A., Amer, R., and Kuksy., 2010; Amera, 2007)  

2.4. Image Classification 

Image classification is a technique that assigns land cover classes to pixels based on their attribute 

values. A pixel is allotted to the class to which its attributes, such as multispectral response, are 

most similar. It can also be defined as a data reduction method that converts remote sensing images 

into thematic data. The three main techniques for image classification in remote sensing are 

Unsupervised, Supervised, and Object-based image analysis. The two most typically used image 
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classification is Unsupervised and Supervised image classification. In this project, unsupervised 

image classification has been done.  

2.4.1. Unsupervised Classification 

Unsupervised classification is a key tool in image processing for geoscience and remote sensing 

applications, and it’s employed when reliable data is few or unavailable (Memarsadeghi et al., 

2003). Unsupervised classification first divides pixels into "clusters" depending on their properties, 

then assigns a land cover class to each cluster. The following are the stages required for 

unsupervised classification: 

• Generate clusters: In this step, the program clusters pixels into a set number of classes. 

So, step one is to assign the range of classes you want to generate. Also, you must identify 

which bands you need to use. The steps are: 

• Input: this is to input the image needed to be classified 

• Number of classes: Choose some number of classes needed to generate during the 

unsupervised classification  

• Minimum class size: It’s the number of pixels to make a unique class 

• Assign classes: this is the level at which you have to identify each class from the output 

iso-clusters. The steps are:  

• Select color for each class 

• After setting the colors for each class, it can be merged with each of your classes, and 

we can merge the classes using the reclassify tool. 

The use of unsupervised classification is to investigate and cluster unlabeled datasets. The applied 

methods discover hidden patterns or data groupings without the requirement for human 

intervention.  El Atillah et al. (2019)  used Iso-data and K-Means classification on Sentinel-2 for 

mapping the hydrothermal alteration zone mapping. The two types of classification are discussed 

below: 

2.4.1.1. K-Means 

K-mean is one of the unsupervised classification procedures. This method’s classification principle 

is to classify pixel values based on K values, which are the desired number of classes or clusters 

(Nurdin et al., 2019). It’s a clusterization method that groups object by minimizing the sum of 
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quadratic or Euclidean distance between each object and the cluster centroid or group. K-Means 

cluster homogeneous pixels based on the center pixel (Nivedita Priyadarshini et al., 2018). With 

clustering, we can quickly partition data into clusters equal to or more than the number of classes, 

making it ideal for classification. 

2.4.1.2. Iso-data 

Iterative Self-Organizing Data Analysis Technique (ISODATA) classification is one of the 

unsupervised classification methods in which the principle is to classify pixel values based on a 

mean value into certain groups/clusters. The Iso-data algorithm works by grouping similar clusters 

and data in clusters so that they can be divided according to the maximum standard deviations 

(Wang, 2016). This algorithm is based on optimal thresholding by using a criterion function to 

measure the statistical separation between two regions (El Atillah et al., 2021). The first principal 

components usually apply the Iso-data technique to reduce processing load. 

Table 3. Geological map sheet of Kufrah basin by the industrial research center of Libya  

GEOLOGICAL MAP SHEETS COVERING THE KUFRAH BASIN ON A SCALE OF 1:250,000 (2016) 

NO. Map Sheet Author 

1 Bir as Sulaya (NF 34-7) 

Loránt M., Mabrouk JB. (eds.), Albert G., Csillag G., Csontos P., Elgrewi AM., 

Fodor L., Kalmár J., Lantos Z., Trish KB., El-Mehdi BO. 199P 

2 Jabal ash Sharif (NF 34-8) 

Lantos Z., Réti Zs., Trish KB. (eds.), Fodor LI., Albert G., Csillag G., Loránt M., 

Kalmár J., Csontos P., Koloszár L., Mabrouk JB., Elgrewi AM.178P 

3 South al Kufrah (NF 34-4) 

Kalmár J., Loránt M. Elgrewi AM (eds.), Lantos Z., Albert G., Fodor LI., Réti Zs., 

Csillag G., Csontos P., Mabrouk JB., Trish KB., El-Mehdi BO. 199P 

4 Hassi Nafou (NF 34-3) 

Albert G., Mabrouk JB. (eds.), Császár G., Fodor L., Kalmár J., Loránt M., 

Csontos P., Trish KB. Elgrewi AM., El-Mehdi B. 140P 

5 Matan as Sarah (NF 34-11) 

 Lantos Z., El-Grewi AM. (eds.). Albert G., Császár G., Csillag G., Csontos P., 

El-Mehdi B., Fodor L., Kalmár J., Koloszár L., Loránt M., Mabrouk JB., Réti Zs., 

Trish KB. 217P 

6 Rabyanah (NG 34-15) 

Albert G., El-Mehdi BO. (eds.), Fodor L., Kalmár J., Loránt M., Csontos P., Trish 

KB., El-Grewi AM. 137P 

7 Al Kufrah (NG 34-16) 

Császár G., El-Mehdi BO. (eds.), Kalmár J., Fodor L., Albert G., Lantos Z., 

Csillag G., Csontos P., Loránt M., Trish KB., Mabrouk JB., El-Grewi AM. 243P 

8 Matan Al Sarah (NF 34-12) 

Lantos Z., Mabrouk JB. (eds.). Albert G., Csillag G., Csontos P., El-Grewi AM., 

El-Mehdi BO., Fodor L., Kalmár J., Koloszár L., Loránt M., Réti Zs., Trish KB. 

255P 

9 East Irq Al Idrisi (NF 35-13) 

Albert G., Trish KB. (eds.), Császár G., Csillag G., Csontos P., El-Grewi AM., El-

Mehdi BO., Fodor L., Kalmár J., Loránt M., Mabrouk JB.133P 

10 West Irq al Idrisi (NF 34-15) 

 Réti Zs., Mabrouk JB. (eds.), Koloszár L., Kalmár J., Fodor L., Lantos Z., Albert 

G., Csillag G., Csontos P., Trish KB., El-Grewi AM., Lóránt M., El-Mehdi 

BO.175P 

11 Irq al Idrisi NF (34-16) 

Réti Zs., Trish KB. (eds.), Lantos Z., Kalmár J., Fodor L., Csillag G., Albert G., 

Csontos P., Mabrouk JB., El-Mehdi BO.191P 

12 South Irq al Idrisi (NE 34-4) 

Réti Zs., Trish KB. (eds.), Lantos Z., Koloszár L., Kalmár J., Albert G., Csillag 

G., Csontos P., Loránt M., Mabrouk JB., El-Grewi AM., El-Mehdi BO. 178P 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1. Sentinel-2 image data  

The datasets used within the thesis encompass Sentinel-2A images and a 12 geological map series 

of Libya 1:250,000 by Industrial Research Center, Libya, and Er-Petro Ltd. in 2008 (Table 3). 

Sentinel-2A images are high-resolution multispectral imagery that is undertaken by the Copernicus 

Program Https://scihub.copernicus.eu/dhus/#/home. The mentioned website already corrects the 

satellite images. Sentinel-2 delivers reflectance data cubes that exclude atmospheric influences 

such as water vapor or aerosol correction, allowing end customers to receive ready-to-use products 

(Soydan et al., 2021). The acquisition date was from 13th November 2020 to 24th February 2020. 

The subset of thirty-two (32) satellite images was acquired to cover the study area (Table 4). The 

Sentinel image used is a level -2A with the bottom of atmospheric (BOA) reflectance. The images 

vary in their spectral resolution depending on the band can be seen in table 5.  

As a new mission, the Sentinel satellites can provide regular ordinary observations and data 

continuity from the previous mission of the European Remote Sensing satellite (ERS), SPOT, 

ASTER, etc. (Van der Meer et al., 2014). The Sentinel 2A was launched on 23 June 2015, carrying 

a single Multi-Spectral Instrument (MSI); it comprises 13 spectral bands VNIR bands (B2, B3, 

B4, and B8) at 10m resolution, red edge bands (B5, B6, B7, B8a) at 20m resolution, SWIR bands 

(B11 and B12) at 20m resolution, aerosol band (B1) at 60m resolution, water vapor band (B9) at 

60m resolution and cirrus SWIR (B10) at 60m resolution. Sentinel-2 band combinations give 

specific information such as natural color (B4, B3, B3), color infrared (B8, B4, B3), short-wave 

infrared (B12, B8A, B4), agriculture (B11, B8, B2), geology (B12, B11, B2), Bathymetric (B4, 

B3, B1), vegetation Index (B8-B4)/(B8+B4), and moisture Index (B8A-B11)/(B8+B11) 

(GISGeography, 2021). Sentinel-2A and Sentinel-2B, launched on 7 March 2017, comprise a 

system of twin-polar orbiting satellites, phased at 180o to each other, and the cooperation of twin 

satellites provides a temporal resolution of 5 days (Lin et al., 2019). 

The Sentinel-2A bands were mosaiced and clipped at Environment for Visualizing Images (ENVI) 

5.3 to cover the desired area. And QGIS 3.16 was used for resampling and stacking on the desired 

resolution. This resampled data gives detailed information as it contains a smaller grid size. 

https://scihub.copernicus.eu/dhus/#/home
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Table 4. Data set and source of Sentinel-2A images for the study area 

Satellite Sensor ID Layers Date of 

acquisition 

Grid 

cell size 

Product 

level 

Sentinel

-2A 

T34QEH_20210112T090331 

T34QEJ_20210112T090331 

T34QEK_20210102T090351 

T34QEK_20210105T091351 

T34QEL_20210102T090351 

T34QEL_20210214T091051 

T34QEM_20201213T090351 

T34QEM_20210214T091051 

T34QFG_20210112T090331 

T34QFH_20210112T090331 

T34QFJ_20210313T085741 

T34QFK_20210201T090211 

T34QFL_20210201T090211 

T34QFM_20210201T090211 

T34QGG_20201230T085351 

T34QGG_20210112T090331 

T34QGH_20210122T090301 

T34QGH_20210129T085221 

T34QGJ_20201203T090341 

T34QGJ_20210218T085021 

T34QGK_20201230T085351 

T34QGK_20210102T090351 

T34QGL_20210102T090351 

T34QGM_20210201T090211 

T34QHG_20210208T085121 

T34QHH_20201130T085331 

T34QHJ_20210208T085121 

T34QHK_20210129T085221 

T34REN_20210105T091351 

T34REN_20210122T090301 

T34RFN_20201213T090351 

T34RGN_20201213T090351 

13 13/11/2020

-

24/02/2021 

10 (m) Level 2A 

(Source: Https://scihub.copernicus.eu/dhus/#/home) 

The bands used for the study areas include both VNIR bands (B2, B3, B4, and B8) at 10m 

resolution, and red edge bands (B5, B6, B7, B8a) at 20m resolution, SWIR bands (B11 and B12) 

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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at 20m resolution. The Sentinel-2A images have been resampled with the nearest neighbor method 

to a high resolution of 10 m instead of 20/30/60 m to provide information on the lithology for 

prospecting and exploration purposes. The data was projected to Universal Transverse Mercator 

(UTM) projection (WGS 84, zone 34N).  

Table 5. Wavelength and bandwidth of the spatial resolution of the MSI instrument 

Spatial 

Resolution 

(m) 

Band 

Number 

S2A S2B 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

10 2 492.4 66 492.1 66 

3 559.8 36 559.0 36 

4 664.6 31 664.9 31 

8 832.8 106 832.9 106 

20 5 704.1 15 703.8 16 

6 740.5 15 739.1 15 

7 782.8 20 779.7 20 

8a 864.7 21 864.0 22 

11 1613.7 91 1610.4 94 

12 2202.4 175 2185.7 185 

60 1 442.7 21 442.2 21 

9 945.1 20 943.2 21 

10 1373.5 31 1376.9 30 

(Source:https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath) 

Generally, multispectral satellite image allows for the detection of hydrothermal alterations and 

lithological units and non-geological features based on the spectral signature of their wavelength. 

And Sentinel-2 images are used as they are capable or best used for mineral exploration and 

hydrothermal alteration zones as they have wide electromagnetic regions with specific 

information. A geological map of the study area has been used for reference and validation.  

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath
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3.2. Software 

The software used for the research and flow chart of the workflow is mentioned below: (I) ENVI 

(Environment for Visualizing Images) version 5.3.0 for clipping, mosaicking, image processing, 

and analysis of multispectral images; (III) Quantum GIS (QGIS) version 3.16.0 was used for 

analyses, georeferencing, comparison, map preparation, and layout.  

3.3. Implication of remote sensing 

As Libya is a country located in semi-arid regions of northern Africa, the accessibility of geological 

features isn’t convenient by a conventional field survey method. As the study area is in a desert 

area, the outcrops are affected by long weathering periods due to the climate. The morphology of 

the area is dominantly planar, and diverse lithology is associated with the outcropping hills and 

mesas. Due to the lack of vegetation, the lithology can be identified by using Sentinel -2 bands. 

As a result, extracting Earth materials information from various analyses applied to remote sensing 

datasets is ideal for investigating the potential of multispectral datasets in identifying mineralized 

zones and geological mapping in the Al Kufrah Basin. The geological map of the Al Kufrah Basin 

is used as ground control for analyzing remote sensing datasets.  

3.4. Mapping  

Individual bands of Sentinel-2 images can’t display features of interest as the images are displayed 

in grey scales. Although the human eye can distinguish about 30 grey levels in the black-white 

range (Drury, 2001), It is more sensitive to color variations and patterns (Rafatirad, n.d.). Sentinel 

2 data was chosen to highlight altered minerals. Several studies have been done on Sentinel-2 

images combined with hyperspectral images by spectrally lowering the resolution to explore iron 

mineral characteristics, demonstrating the Sentinel-2 data's potential to catch iron-induced features 

(Mielke et al., 2014; van der Werff & van der Meer, 2015). 

3.4.1. Band Ratio (BR) 

The band ratio technique has been applied for the Sentinel-2 images. Several band ratios have been 

conducted on spectral bands VNIR bands (B2, B3, B4, and B8) and SWIR bands (B11 and B12) 

at 10 m resolution. Many band ratios used in previous studies were used to detect some zones with 

anomalies in iron deposits. The eight band ratios that have been tested to highlight the needed 

result is listed in table 6. The band highlights a different group of alteration minerals, including 

Ferric iron, Fe3+, Ferrous iron, Fe2+, Laterite, Gossan, Ferrous silicates, and Ferric oxides. 
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Table 6. Band ratio of Sentinel-2 bands applied for iron deposits 

Feature Sentinel 2A 

All iron Oxide 4/2 

Ferrous iron oxides 4/11 

Ferric iron, Fe3+ 4/3 

Ferrous iron, Fe2+ 12/8+3/4 

Hydroxyl bearing alteration 11/12 

Gossan 11/4 

Ferrous silicates 12/11 

Ferric oxides 11/8 

 

3.4.2. False Color Composite (FCC) 

As the false-color image depicts color composites that show wavelengths that the human eye 

cannot see, selecting three bands composite image wasn’t as easy. FCC analysis was carried out 

for visualization discriminating geologic features of the study area. The FCC plays an important 

role when applying to the VNIR/SWIR bands of Sentinel 2. Abulghasem et al. (2011) used RGB 

image combinations of 7-4-2 of the ETM+ band for studying geological discriminations. A 

correspondence RGB color composite was applied from the individual band sets of bands 12,8,3 

composite for surface lithological analysis.  

The impact of various band ratios and their combinations were tested. Abram’s ratio, Chica-Olma 

ratio, Kaufman ’s ratio, and Sultan’s ratio were all examined as recommended combinations to 

highlight geological characteristics (after Mwaniki et al., 2015). Three of the most common Ratio 

composite images were utilized to map ferruginous deposits as well as distinguish between 

different rocks. The RGB ratio composite of Sentinel-2 images used to enhance the ferruginous 

sediments was 4/2-11/8-11/12 blue (Sabins, 1999; CSIRO., 2003).  

3.4.3. Principal Component Analysis (PCA) 

Principal component analysis band selection analysis depends on the three greatest eigenvalues 

and their correspondence eigenvector (Bengal, 2013). Only nine bands(2, 3, 4, 5, 6, 7, 8, 8a,11, 

12) of the 13 Sentinel-2 bands are suitable for geological purposes on PCA, and band 8 has a wide 

bandwidth; hence it is excluded, while bands with 60m resolution are also excluded (Salehi et al., 
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2019). Because the original image bands are so closely related, establishing PCA bands has the 

effect of providing new independent transformed bands and possibly reducing the number of bands 

required (Chapman, 2020). The PCA transformation was employed using ENVI on the 9 Sentinel 

bands. Because PCA was performed using the correlation matrix, the eigenvector entries also serve 

as loadings (correlations between the input band and the output component) without any additional 

computations. Based on the assessment of eigenvector loadings in each 9PCs, the PC images 

containing information linked to the spectral signatures of specific features of interest were chosen 

(Table 8). The first three principal components can be represented in an RGB composite. 

3.5. Image Classification 

In this thesis project, unsupervised classification has been applied using ENVI software. This 

method is beneficial when there is a scarcity or high cost of quality training data, as well as when 

there is minimal information about the data. The two widely used algorithms of unsupervised 

classification applied in this study were K-means and Iso-data. Clusters in multidimensional 

attribute space are determined using spectral reflectance from various bands. For categorization, 

multispectral and hyperspectral images are often utilized (Ducart et al., 2016).  

The classification was performed in the PCA results of the first three PCs (PC1-PC2-PC3) with 

the highest eigenvalues of 99.6245510 %, 0.265299 %, and 0.060897 %, respectively. The K- 

mean and Iso-data was set up with 10 number of maximum iterations, 5% of change threshold, 

and 16 classes. The number of classes has been chosen based on the number of lithologies that 

covers the area, which is 16. 
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CHAPTER FOUR: DISCUSSION AND RESULT 

The result of image analysis on the Sentinel-2 datasets and along with a discussion, are presented 

in this chapter. The results of image analyses of Sentinel-2 data are used to demonstrate the 

findings on the ferruginous deposit, mapping, and image classification are presented in the same 

order as the Methodology chapter. Finally, the results were cross-checked against the generalized 

geological map for validation. 

4.1. Image Analysis 

The general lithologies overall lithologies in the study area are listed in the legend with the Index 

in table 7. Two separate geological maps were prepared, one based on the number of lithologies 

and the other one on geological time formations of the lithologies (figure 3A and figure 3B), 

respectively. On the map, the Cenozoic ferruginous sediments are labeled with the legend name of 

CzI. 

4.2. Band Ratio Images 

Different band ratio and their combination were tested. Of the most commonly used combinations, 

three were applied to map the ferruginous sediments and discriminate the rocks. Abram’s ratio 

combination was good at discriminating lithologic structures, whereas Kaufmann’s ratio didn’t 

differentiate between various lithologic units. Chica-Olma ratio composite using 4/2-11/8-11/12 

gave a good result.  

The band ratio of 4/2 is sensitive to iron even in low concentrations; hence the iron oxide is 

widespread in the northeastern part of the area in red color. Sandstone, siltstone, and claystone are 

the underlying rocks in this region. The presence of ferrous and clay minerals is denoted by the 

presence of green color, including sandstone, siltstone, claystone, conglomerate, and kaolinitic 

siltstone. The shades of blue that can be seen on the site are within the lateritic, which indicates 

the presence of ferrous as well as clay and very few iron oxides (figure 4A). Regarding the geology 

of the study area, which covers various lithology, the contact between each rock was not clearly 

mapped by the applied method. The band ratios played a significant role only in highlighting the 

iron oxide, ferruginous sediments, laterite, and geologic units. When compared to the findings 

obtained using the same methodology by Mia, B., & Fujimitsu (2012), the results obtained using 

the Chica-Olma ratio that was employed in the research area showed a high degree of concordance. 
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4.3. False Color Composite 

The employment of band triplets of Sentinel- 2 bands of 12-8-3 in the creation of FCC improved 

various lithologic units. The Holocene sand deposits area appears a pale violet color, and the 

lateritic deposits are displaying as a pale yellow (figure 1). The Cretaceous and Permian 

sedimentary succession appear in a dull green colors and black color. 

A comparison was made between the previously published RGB images (El-Liel et al., 2017). The 

present study’s findings confirm the notion that the color composite image is useful for the newly 

developed Sentinel datasets. 

4.4. Principal Component Analysis 

This analysis produces PC bands and statistics containing the eigenvectors, covariance matrix, and 

eigenvalues. The eigenvectors matrix is used to identify the PC bands that contain the spectral 

information of specific minerals. The eigenvector matrix for the principal component analysis 

(PCA) transformation of Sentinel bands, which resulted in 9 PC outputs, is summarized in Table 

7. Following the application of the principal component transformation, it has been determined 

that the first principal component, denoted by PC1, is composed of a positive weighing of total 

bands. The PC1 accounts for the maximum variance, which is approximately 99.62%. The utilized 

RGB composite of PC1-PC2-PC3 is shown in figure 4B, which gives results in discerning geologic 

lithologies. Even though the geologic contrast is readily apparent in the combination, some 

lithologic units share similar colors. For instance, the laterite and neighboring lithologies both 

appear in pale orange color. The weakness of the PCA method is the difficulty in interpreting a 

color composite from PC (Chavez, P.S., Jr, Kwarteng, 1989). When PC1 is excluded, the image 

can lack contrast. But PCA analyzed images can be useful for classification analysis. 

4.5 Image Classification 

The classification resulted in classifying the lithologies based on the spectral signature of the rocks. 

The result for lithologic mapping of the two algorithms were compared; the rock units were well-

classified using K-mean and Iso-data classifier for the study area. 

Figure 5A and 5B show the K-mean and Iso-data classified map using three PC inputs of PC1, 

PC2, and PC3.  Both classifications resulted in 16 classes (1, 2, 3, 4, 5, 6, 7 ,8, 9, 10, 11, 12, 13, 

14, 15, and 16). The K- mean classification map of the study area was considered the best result 

for lithologic discrimination in the geologic lithology. The result of the classification map of the 
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area using the Iso-data algorithm was considered the best candidate for the geologic map of the 

area.  

Zonal statistics operation was analyzed to produce statistics on cell values of a raster (a value 

raster) that is contained inside the zones defined by a different dataset (geological map). As a 

result, both algorithms assigned the ferruginous sediment deposit in the same class. No lithology 

has been assigned to classes number, 1,2, and 3 which covers only 0.13% of the total study area. 

The Cenozoic ferruginous deposits are concentrated in the assigned classes of (11,12,14,15), 

distributed from less to a high concentration of possible iron. 57 % of the pixel count of the 

ferruginous sediment is assigned to class 14 (Table 9). 

 This classification of PCA of Sentinel 2 data appears to reasonably represent the surface geology 

character of the distribution of ferruginous sediments in the area. Nevertheless, the K-mean 

classified image was consistent with the geological map that was used as a reference for the area. 

The percentage of the area of a polygon for each lithology in the geological map and the total count 

of a pixel of lithology in the classified image rank the lithologies in the same rank. Cenozoic 

ferruginous sediments were approximately covering 4 % of the area on the geological map, 

whereas in the classified image (K- mean classification), the sediment has 2 % occurrence on the 

classified image. 
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Table 7. Geological Index of the lithology 

Geologic Indices 

Geologic Time Symbol Formation Composition 

 Qed Eolian sediments, sand dunes Sand 

HOLOCENE Qes Eolian sediments, sand sheets Sand, fine gravel 

 Qf Fluvial sediments Unconsolidated clay, silt, sand, and gravel 

 Qw Wadi deposits Gravel, sand, silt, and loam 

 Qpl Playa deposits Siltstone, clayey siltstone, gravel, calcrete 

PLEISTOCENE - Qd Colluvial and slope deposits Slope debris, sand, sandy silt 

HOLOCENE Qg Serir Gravel, sand, rock debris of fluvial, pluvial origin with eolian 

reworking 

 Qp Proluvial sediments, alluvial fan Rock debris, sand, and silt, locally cemented 

 Qo Old wadi sediments Unconsolidated gravel, sand, and silt 

 Qop Old proluvial sediments, old alluvial fan Unconsolidated gravel, sand, and silt 

PLEISTOCENE Qlc Lacustrine deposits Rock debris, sand, and silt, locally cemented 

 Qs Sabkha sediments Salt, gypsum, gypsiferous clay 

 Qn Nabkha sediments Salty sand, gypsum 

OLIGOCENE Β Basalt, fonolite Basalt, olivine basalt, microporphyric basalt, phonolite 

 Czl Idrisi Formation In situ weathering product, laterite, duricrust, 

ferruginous, locally redeposited 

CENOZOIC Czc Continental sediments in general Gravel, rock debris, sand, silt, locally cemented, often ferruginous 

CRETACEOUS KN Al Jawf Formation* / Nubia Formation Sandstone, siltstone, claystone and conglomerate 

PERMIAN-LOWER PKIQ Quarat Al Hamra Formation Sandstone, siltstone, claystone, and conglomerate, 

kaolinitic siltstone 

CRETACEOUS PKIQR Rabyanah Member (Quarat Al HamraFm.) Lacustrine marl and limestone 

CARBONIFEROUS CZ Az Zalmah Formation Intercalations of siltstone, claystone, shale, sandstone, Kaolinitic 

sandstone, and conglomerate 
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Figure 3. Geologic map: (a) geological lithology, (b) geologic time of formations 
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Figure 4. A: RGB band ratio of Sentinel-2 band (4/2-11/8-11/12) and B: PCA (pc1-pc2-pc3) 
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Table 8.  PCA of Sentinel-2 Bands 

Input Bands Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8a Band 11 Band 12  

Band 

Means 1021.643215 1893.400586 3142.935464 3460.140970 3579.554360 3646.566601 3611.092908 4748.168279 4304.686683  

Band 

StdDev 745.865581 1342.494856 2173.216580 2383.691890 2461.528759 2508.718809 2494.389818 3230.632576 2953.331833  

Eigen Vector Matrix 
Eigen 

Value (%) 

PC1 0.101353 0.186761 0.305978 0.335925 0.346949 0.353620 0.351417 0.454386   0.415930 99.624551  

PC2 0.484604 0.559192 0.219742 0.107344 0.021312 0.033379 0.189492 -0.554782 -0.217704 0.265299  

PC3 0.461880 0.386662 -0.249680 -0.275243 -0.298643 -0.254877 -0.243479 0.386027 0.369610 0.060897  

PC4 0.152230 0.099129 0.187170 0.086871 0.086051 0.005594 -0.241109 0.540526 -0.752783 0.028410  

PC5 0.257038 -0.105034 -0.790257 0.065505 0.143786 0.227898 0.411835 0.064003 -0.218601 0.011989  

PC6 0.529910 -0.615875 0.345086 -0.182736 -0.187869 -0.166730 0.349089 0.048832 -0.008689 0.003818  

PC7 0.354757 -0.293295 -0.118329 0.616538 0.231789 -0.124355 -0.525475 -0.153561 0.158459 0.003128  

PC8 -0.208916 0.111197 -0.050019 0.575442 -0.434965 -0.521611 0.362615 0.119481 -0.057584 0.001671  

PC9 -0.044802 0.066110 -0.024995 -0.208303 0.695478 -0.664505 0.155237 0.015071 0.005056 0.000236  
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Figure 5. K-Mean and Iso-data Classification On (PC1-PC2-PC3): A And B, respectively 
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Table 9. Zonal statistics on Classified image 

Assigned Classes in Percentage (%) of the pixel count in each class 

 
C-1 C-2 C-3 C-

4 
C-
5 

C-6 C-7 C-
8 

C-
9 

C-
10 

C-
11 

C-
12 

C-
13 

C-
14 

C-
15 

C-
16 

 
Total 

% 

Pixel wise  
distributio

n 

Polygon wise 
distribution 

Geologica
l-

Lithology 

Qed 0 0 0 0 0 0 0 0 0 0 1 1 5 23 9 61 100% 12 9 

Qes 0 0 0 0 0 0 0 0 0 0 2 8 17 35 30 8 100% 17 17 

Qf 0 0 0 0 0 0 0 0 0 0 0 7 54 38 1 0 100% 0.06 0.1 

Qw 0 0 0 0 0 0 1 1 3 11 26 25 18 13 2 0 100% 1 2 

Qpl 0 0 0 0 0 0 0 1 2 4 11 35 37 9 1 0 100% 0.1 0.3 

Qd 0 0 0 2 1 1 1 2 9 18 21 16 11 12 4 2 100% 2 4 

Qg 0 0 0 0 0 0 0 0 0 1 6 16 33 34 10 0 100% 21 12 

Qp 0 0 0 0 0 0 0 1 3 9 13 17 13 32 12 0 100% 5 11 

Qo 0 0 0 0 0 0 0 0 0 0 1 5 14 30 48 2 100% 0.3 1 

Qlc 0 0 0 0 0 0 0 0 1 2 5 9 15 35 26 7 100% 0.1 0.2 

Qs 0 0 0 0 0 0 0 0 0 0 0 0 1 52 44 3 100% 0.03 0.08 

Betab 0 0 0 0 0 0 1 3 7 12 21 25 21 9 1 0 100% 0.01 0.02 

Czl 0 0 0 0 0 0 0 0 0 1 1 8 14 57 18 1 100% 2 4.3 

KN 0 0 0 1 2 2 3 4 6 9 15 20 21 14 3 0 100% 16 18 

PKIQ 0 0 0 0 0 0 0 1 2 5 13 19 29 27 4 0 100% 23 20 

CZ 0 0 0 0 1 3 7 9 10 12 10 8 8 13 16 3 100% 0.4 1 

% TC 0.0
1 

0.0
4 

0.0
8 

0.
2 

0.
4 

0.5
5 

0.7
2 

1 2 4 8 14 22 27 11 9 100% 100% 100% 

*C: Class      *TC: Pixel count of each class in the area        

Pixel wise distribution = (Pixel count of individual lithology/total pixel 
count of all lithology in the area) *100 

       

Polygon wise distribution = (Area of polygons of an individual lithology/total 
Area of polygons of all lithology) *100 
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS 

The results of this study demonstrate that remote sensing techniques are effective techniques for 

geological mapping and mineral exploration. The result shows around 57 % of the Cenozoic 

ferruginous sediments are assigned to class 14 in the classification. Different processing 

approaches were used to identify and delineate lithological units using Sentinel-2 images to 

identify and map the ferruginous concentrated iron sediments in the Al Kufrah Basin. This study 

demonstrates that the standard color composite and color composite images created using PCA are 

useful for distinguishing between lithologies. 

 False-color composite images enhance the appearance of distinct lithologic units and structures 

more than a single band image would. Ratio images and their combination, such as the Chica-

Olma ratio faceplate, the recognition of iron oxides, and hydrothermal alteration. In this study, the 

iron-concentrated ferruginous deposits were clearly recognized using the Chica-Olma ratio. 

PCA approach applied to the Sentinel -2 bands reduces the correlation between spectral bands. 

PCA analysis produced inconsistent outcomes in terms of improving geologic feature 

discrimination. Bands with the greatest variance are separated and saved in the three PC bands. 

The creation of color composite images by combining the three PCs improves and facilitates the 

visual discrimination of geologic units and features that are not improved in ordinary color 

composite images. 

Utilizing the K-mean and Iso-data classification algorithms, unsupervised classification turned 

into a good lithology classification. The result of the identification of ferruginous sediments 

suggests the presence of an iron deposit, confirming the results of the earlier geological mapping. 

The classification revealed that ferruginous deposits are widespread throughout the area, but 

prospective iron-rich ferruginous sediment is concentrated in the central part of the area, 

specifically in the northeastern portions, while field investigations supported the same findings. 

The finding of widespread sediment distribution may suggest the deposit  

The study also demonstrated the significance of remote sensing analysis for geologic data 

collection prior to fieldwork. Remote sensing techniques give detailed information, which allows 

for the mapping of mineral deposits even though the concentration of minerals cannot be directly 
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measured. The fact that remote sensing data can be downloaded for free significantly increases the 

value of remote sensing analysis for mineral exploration and geologic mapping. 

Though the use of Sentinel-2 data enabled the discrimination of different geologic features and the 

mapping of the distribution of ferruginous concentrations in the Al Kufrah Basin, it is expected 

that further study using a variety of methodologies could yield even better findings for the 

extension of the iron deposits. The mineral can be found in sedimentary iron deposits, from which 

practically almost all iron is deposited.  

PCA approaches can be implemented in oriented (Crósta technique/Feature-oriented 

(FPCS)/developed selective PC) techniques (El Zalaky M.A et al., 2018) for better results in 

finding iron oxide and Hydrothermal alterations. To determine the applicability of the remote 

sensing techniques and analysis approaches used in this work in other locations, they should be 

evaluated in mineral and geologic mapping applications in other regions. Due to time, the 

investigation was focused mainly on the Cenozoic ferruginous sediments of the Al Kufrah Basin. 

If appropriate funding and time are made available, the study can be expanded to explore and 

validate the other lithologies in the area with appropriate approaches.  
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