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Abstract 

The importance of urban green space has over the years grown into an indispensable component 

in urban planning and design, as vegetation plays an irreplaceable role in urban ecosystem services. 

Therefore, monitoring and studying the distribution of biomass for urban vegetation is necessary 

because of its impact on the life and health of urban residents. Remote sensing technology has 

provided many advantages for studying and monitoring urban vegetation cover, due to its temporal 

and spatial characteristics in overcoming the scarcity of information, and the short revisit period, 

which helps to make quick, more effective and impactful decisions. The normalized difference 

vegetation index (NDVI) was calculated for the city of Budapest in order to study and assess the 

behavior of vegetation cover there, based on the Sentinel-2 imagery spanning over five years 

between the years 2017 and 2021. Vegetation change has been extensively studied in the three 

most green urban areas. The results showed that 2021 was the least green year in general, and this 

corresponds to the average rainfall and temperature in that year. Also, NDVI threshold-based 

supervised classification was performed to determine land cover changes, as the city of Budapest 

has become greener during these years by about 100 hectares. 

 

 

Keywords: Budapest, Urbanization, Urban vegetation, Remote sensing, NDVI, Sentinel-2, 

Vegetation cover monitoring 
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1.  Introduction 

Urbanization is experiencing rapid growth all over the world, as it is reducing the presence of 

urban vegetation cover, and disrupting the urban ecosystem, which is helping to stimulate the 

phenomenon of climate change, and creating the urban heat island (UHI), which refers to the 

difference in temperature between areas inside and outside the city (Bartholy et al., 2020). 

Urban vegetation has become a major element in urban planning for cities for urban 

sustainability, because of its various effects on the health of citizens and their well-being of living, 

as it contributes significantly to facing the effects of urban and climate change by decreasing 

temperature, air pollution, and noise, etc (Jabbar et al., 2021). 

Given the important role played by urban vegetation cover in serving the local climate of the 

city and the ecosystem, urban green areas must be carefully studied and monitored, as the 

availability of a correct estimate of the biomass of urban vegetation is the main step in facing the 

problems of urbanization and its impact on the climate, in order to provide decision-makers and 

city planners with this information in order to be taken into account and relied on in the planning 

of cities for the future (Jim, 2013). 

The methods used in estimating and mapping urban vegetation cover have developed and 

become more accurate, as field measurements were adopted in the past, but it consumes a very 

long time and a relatively large number of skilled crews, in addition, it is stressful work (Li et al., 

2020). As for now, remote sensing is widely used, as it is considered a great tool for estimating 

and mapping the biomass of urban green spaces due to its temporal and spatial characteristics, 

short revisit period, and wide coverage, more efficiently and on a larger scale than the traditional 

method (S. Liang & Wang, 2020). 

Furthermore, remote sensing technology has proven to be great in observing and understanding 

the impact of urban vegetation on the environmental problems of cities (Jung et al., 2018). 

The city of Budapest, located in Hungary, was chosen in order to study the vegetation cover 

and its changes, as Budapest has a continental climate, with relatively high summer temperatures 

and frequent heat waves being a problem (Páldy et al., 2005). Sentinel-2 images with a resolution 

of 10 meters were used from 2017 to 2021 from April to September of each year, to calculate 
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NDVI indicator, in order to study the vegetation cover of the city of Budapest and study the change 

of urban vegetation cover in the three urban greenest areas in it in order to judge Budapest and see 

the behavior of the urban vegetation cover in it if it becomes greener or grayer, and seeing how 

suitable and healthy it is to live by studying the behavior of urban vegetation and providing results 

and data on which future studies can be conducted. 
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2.  Literature review and conceptual background 

It is essential to review background information, concepts, and related studies in order to 

analyze land cover changes. This chapter focuses on remote sensing, urbanization, NDVI, and the 

Sentinel 2 program, as well as a review of relevant literature. 

2.1. Remote sensing 

Remote Sensing (RS) can be defined as the process of obtaining, interpreting, and processing 

images and information about an object through analysis of the data obtained by the sensor without 

being in physical contact with it (Schultz & Engman, 2000). This can be done by using recording 

or real-time sensor devices mounted on aircraft, spacecraft, satellites, etc. Detecting and 

differentiating objects on the Earth's surface entails detecting and recording the radiant energy 

reflected or emitted by objects or materials on the surface. 

This technique consists of various components. Figure 3 shows, energy source, is a condition 

for implementing a remote sensing process, which determines whether the remote sensing process 

is passive, where the sun is the source of electromagnetic energy and the sensors measure the 

reflection of solar radiation at visible, near-infrared, and mid-infrared wavelengths (Dong & Chen, 

2017). Active sensors provide their own energy source for lighting. The sensor emits radiation 

directed at the target to be examined. The radiation reflected from this target is detected and 

measured by the sensor. 
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Figure 1. Remote sensing process. Source: (Subramaniam & Mallast, 2017). 

 

When solar radiation incident on the Earth's surface, Figure 2, the incident radiation can be: 

❖ Transmission is the process by which incident radiation passes through matter. 

❖ Reflection is the process through which incoming radiation bounces off the surface of a 

material in a particular, predictable direction. The angle of incidence and reflection are 

always equal and opposing (Schultz & Engman, 2000). 

❖ Scattering is when incoming radiation is distributed or spread out unpredictably in 

numerous directions, including the direction from whence it came. 

❖ Absorption is the process by which incoming radiation is absorbed and then 

subsequently released. 

Radiation is emitted by objects based on their temperature and emissivity (Singh & Reddy, 

2018). The remotely sensed data contains both spatial and spectral information (size, shape, and 

orientation), (tone, color, and spectral signature). 

While traveling from the source to Earth features and from Earth features to the sensor, the 

electromagnetic radiation interacts with the atmosphere. The electromagnetic radiation changes its 

characteristics during this path due to energy loss and wavelength shifts, which impacts the sensor's 

ability to detect the Electromagnetic radiation. This interaction often leads to atmospheric noise. 
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Figure 2. Energy interaction in the atmosphere and at the Earth's surface. Source: (Tempfli et al., 

2009) 

 

2.1.1. Data detection and output 

The sensor, which records the variation of radiant energy reflected or emitted by objects or 

surface material, is the most significant component in remote sensing.  

Different regions of the electromagnetic spectrum are responsive to different types of sensors. 

The recording system's job is to convert the energy sensed by the sensor into a form that can be 

understood. This is accomplished by dividing the incoming energy into different wavelength bands 

using beam splitters and filters, then converting the energy in each wavelength band into an 

electrical signal. The electrical signal is processed to give radiometric data for each band, which 

is recorded in digital format (Chuvieco & Huete, 2009). 
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2.1.2. Electromagnetic Radiation 

Electromagnetic radiation (EMR) is one of the universe's most basic kinds of energy. 

Electromagnetic energy includes visible light, radio waves, ultraviolet rays, radiant heat, X-rays, 

etc. All of this energy is fundamentally similar and propagates according to fundamental wave 

theory (Chuvieco & Huete, 2009). As shown in Figure 3. 

Electromagnetic radiation is a dynamic kind of energy that travels at the speed of light (𝑐 = 3 ∗

108 𝑚 ∗ 𝑠𝑒𝑐−1) as a wave motion. This fundamental wave theory depicts electromagnetic energy 

as moving at the speed of light in a harmonic sinusoidal pattern. 

 𝑐 = 𝑣𝜆 )1) 

where v represents frequency, λ represents wavelength, and c represents velocity. Although 

wave theory can readily describe many aspects of electromagnetic energy, particle theory can shed 

light on how electromagnetic energy interacts with matter. It is suggested that electromagnetic 

radiation is made up of a number of discrete units called photons/quanta. Quantum energy is: 

 𝑄 = ℎ(𝑐/𝜆) )2) 

where Q is the energy of quantum, h is plank’s constant. 

 

Figure 3. Electromagnetic wave components. Source: (Chuvieco & Huete, 2009). 
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2.1.3. Electromagnetic Spectrum 

Most common remote sensing devices work in one or more of the electromagnetic spectrum's 

visible, infrared, and microwave bands. 

The transmission of energy from the surface in different portions of the electromagnetic (EM) 

spectrum is measured by most sensors to record information about the Earth's surface, Figure 4. 

Because the Earth's surface varies in nature, the transmitted energy changes as well, allowing for 

the creation of images of the surface. This energy variation is apparent to human eyes in the visible 

portion of the electromagnetic spectrum. Sensors detect energy fluctuations in both visible and 

non-visible spectrum regions (Singh & Reddy, 2018). 

 

Figure 4. Electromagnetic Spectrum. Source: (Chuvieco & Huete, 2009). 

 

The interaction of electromagnetic radiation with the material on the earth's surface, which is 

reflected, scattered, or emitted from the material, provides the basis for remote sensing. The 

interaction of electromagnetic radiation with the earth's surface characteristics generates reflected 

and/or emitted signals known as spectral signatures (Singh & Reddy, 2018). Detection, 

identification, and analysis of earth's surface material rely heavily on spectral response patterns. 

Table 1, presents the spectral regions of the visible wavelengths down to the thermal infrared. 
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Table 1. Regions of EMR used for remote sensing and their principal applications. 

Spectral regions Wavelength (μm) Principal application 

Visible Region 0.4 – 0.7 
The visible spectral region where it can be 

detected by the eye. 

Blue 0.45 – 0.52 
Water penetration, land use, vegetation 

characteristics, sediment 

Green 0.52 – 0.60 Green reflectance of healthy vegetation 

Red 0.63 – 0.69 
Vegetation discrimination because of red 

chlorophyll absorption 

Reflected Infrared 0.7 – 3 
Reflected infrared region where it exceeds the 

sensitivity range of the eye. 

Near infrared 0.76 – 0.90 
Vegetation vigor, biomass, delineation of water 

features, land forms/geomorphic studies 

Mid infrared 1.55 – 1.75 
Vegetation moisture content, soil moisture content, 

snow and cloud differentiation 

Mid infrared 2.08 – 2.35 Differentiation of geological materials and soils 

Thermal Infrared 3 – 14 

Thermal infrared is used in urban climate and 

environmental studies, mainly for analyzing land 

surface temperature (LST) patterns. 

Thermal IR 3.0 – 5.0 For hot targets, viz., fires and volcanoes 

Thermal IR 10.4 – 12.5 
Thermal sensing, vegetation discrimination, 

volcanic studies 

Source: (Singh & Reddy, 2018) 
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2.2. Remote sensing to detect changes in vegetation cover in urban areas 

2.2.1. Urbanization 

Urbanization has contributed to bringing about significant changes in the urban vegetation 

cover in terms of quality and quantity (Tan et al., 2013), and in most cases, the main responsible 

for the decrease and deterioration of urban vegetation cover is the urban expansion. It is expected 

that by 2050, urban areas will be home to approximately 66% of the world's population (Uçar et 

al., 2020). 

The provision of diverse ecosystem services by public urban green spaces, defined as vegetated 

places within cities that are open to the general public (municipal parks, public playgrounds), is a 

significant component of the urban quality of life (Gren et al., 2013). Public urban green spaces 

reduce the urban heat island effect (Gábor & Jombach, 2010), and offer space for inhabitants to 

engage in recreational and cultural activities including sports, nature viewing, and social 

interaction (Dickinson & Hobbs, 2017). 

Recent research suggests that adequate access to nearby public green places is good for people's 

well-being and mental health, and urban nature is viewed as resilient infrastructure in times of 

disaster, such as the COVID-19 pandemic (Venter et al., 2020). As a result, it's important to give 

people and city planners the information they need on the location and quality of public urban 

green areas (Kabisch et al., 2016), so that may be taken into account in future planning. 

Nonetheless, most cities lack comprehensive and open data sets on public urban green areas, which 

are an essential requirement for such studies (Feltynowski et al., 2018). There has been a growing 

interest in urban vegetation mapping recently, as it affects the local climate of the city, including 

temperature and humidity. This interest in studying urban vegetation is due to the response to 

global climate change, which is a major problem for cities (Kraas & Mertins, 2014). The growing 

number of urban residents, traffic congestion, and the persistent urban heat island effect are all 

factors that directly affect global climate change (Pongracz et al., 2016). 

In order to address such urban problems and their impacts on climate change, urban vegetation 

plays an important role in service to the ecosystem (Pickett et al., 2011). The availability of 

accurate spatial distribution data of urban vegetation is the main step in addressing urban problems.  
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Researchers are becoming increasingly aware of the importance of urban vegetation as their 

understanding of ecosystem services grows, as the study of urban vegetation is critical to achieving 

sustainable urbanization goals (El-mezouar et al., 2011). In recent years, remote sensing 

technology has provided several advantages for urban vegetation studying and mapping, for more 

accurate assessments of ecosystem processes. Relying on remote sensing technology in urban 

planning provides quick, more effective, and impactful decisions (Jung, 2007). 

Urban remote sensing due to the temporal and spatial characteristics can help overcome the paucity 

of reliable and repeatable information on urban vegetation (Churkina et al., 2010). 

The correct estimation of urban plant biomass provides important information about the current 

environmental state of cities, which is used in many fields to conduct planning, management, and 

Preservation of urban vegetation, tree biomass can be estimated using field measurements (Gibbs 

et al., 2007), GIS and remote sensing methods (Lu, 2006). 

Traditional method biomass estimation includes measuring structural features for individual 

tree species and calculating biomass using allometric equations (Sousa et al., 2015). However, this 

process is costly, wasteful of resources, and labor-intensive. A number of methods have been 

proposed for urban vegetation mapping using different methods such as random forest 

classification (Puissant et al., 2014), fuzzy rule-based classification (Hecht et al., 2008), or 

convolutional neural networks (Wegner et al., 2016). 

During the last three decades, low and medium-resolution satellite photos, such as MODIS and 

Landsat images, have been used to detect and monitor urban land changes across wide regions. 

However, because of the low spatial resolution of these pictures, they are only useful for detecting 

large-scale urban land expansion and not for capturing urban land changes at precise scales (Qian 

et al., 2015). Vegetation can be well detected using multi-spectral optical imagery (Hu et al., 2016). 

Very high-resolution LIDAR data (Hancock et al., 2017), or imagery captured by Unmanned 

Aerial Vehicles (UAV) (Suab & Avtar, 2020), are the best data sources for mapping and detecting 

vegetation cover, but due to the difficulty and cost of obtaining this type of data, remote sensing 

techniques might be utilized to map and estimate such urban green biomass more efficiently at a 

greater scale than the traditional method, where images with high to medium precision are used, 

such as Landsat, or synthetic aperture radar (SAR) imagery, and in particular Sentinel-2. 
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2.2.2. Sentinel-2 

Sentinel-2 is an Earth observation mission from the Copernicus Program (European 

Commission and European Space Agency) that acquires high spatial resolution images. The 

mission consists of two satellites operating in the same sun-synchronous (180°) orbit, Sentinel-2A 

and Sentinel-2B, launched on 23 June 2015 and 7 March 2017, respectively. The swath width is 

290 km, with a repeat cycle of five days under the same viewing conditions. A MSI is installed on 

both satellites. The MSI measures the Earth’s reflected radiance in 13 spectral bands, with four 

bands at 10 m, six bands at 20 m, and three bands at 60 m of spatial resolution. (ESA, 2022). 

2.2.3. NDVI 

On a remote sensing image, there are numerous indices for highlighting vegetation-bearing 

areas. The NDVI is a frequently used and well-known index. It's an important vegetation index, 

widely used in studies of worldwide environmental and climatic change (Brumbaugh, 1996), and 

it is used to determine if the target being observed includes living green vegetation or not, using 

remote sensing measurements.  

 

Figure 5. Healthy plants absorb a lot of visible light while reflecting a lot of near-infrared light 

(left). Vegetation that is unhealthy or sparse absorbs more visible light and reflects less near-infrared 

light (right). Source: (Simmon, 2022). 
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It has been relied on NDVI to study changes in urban vegetation cover, and it has been proven 

that the NDVI indicator accurately detects various changes in land cover (Zaitunah et al., 2018). 

This research aims to analyze the vegetation cover areas and their changes in Budapest. The NDVI 

index is a powerful tool for understanding past vegetation, monitoring it in the present, and 

predicting its future (Xing et al., 2020). 

2.2.4. Classification 

Landsat-8, Sentinel-2A/2B products, Moderate Resolution Imaging Spectroradiometer 

(MODIS), LiDAR, UAV images, contributed significantly to the land cover classification. Within 

the framework of NDVI, the various land cover classification methods are divided into two 

categories: index-based classification and machine learning-based classification. 

2.2.4.1. Index-Based Classification 

In index-based classification, each pixel in the image is classified using a threshold of NDVI 

value. (Ehsan & Kazem, 2013), employed an NDVI value to detect changes in Landsat images. 

(Montandon & Small, 2008), used an NDVI threshold for land cover classification and change 

detection in several places. For epidemiological investigations in Spain, (Gascon et al., 2016) 

employed the NDVI value as a marker of plant surroundings. (da Silva et al., 2020), for example, 

used NDVI indices, to classify the land cover in Brazil. 

Classification is performed in machine learning-based methods using two approaches: 

unsupervised and supervised approach.  In the unsupervised approach, this technique does not use 

prior information about the study area, that is, it does not include the training phase, rather, the use 

of algorithms is selected to group a remotely sensed data set with similar spectral characteristics 

into specific clusters (Mohd Hasmadi et al., 2009). The second stage is to identify the land cover 

that represents each group of image units with similar spectral characteristics. 

In the supervised approach, supervised classification is based on the premise that a user can 

select sample pixels in an image that are indicative of specific classes, and then direct the image 

processing software to utilize these training sites as references for classifying the rest of the pixels 

in the image, The study site's ground cover is known, thus training locations are chosen based on 
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that knowledge. The number of categories to which the image is to be classified is determined by 

the user (Oseni et al., 2020). 

2.2.4.2. methods based on machine learning 

The methods based on machine learning can be divided into two parts: 

1. Traditional methods based on machine learning: 

The traditional methods based on machine learning depend on popular algorithms, such as  k-

nearest neighborhood (KNN) (Laaksonen & Oja, 1996), Support Vector Machine (SVM) 

(Kecman, 2005), Random Forest (RF) (BREIMAN, 2001), etc. (Daryaei et al., 2020), utilized the 

RF algorithm to accurately detect vegetation on UAV and Sentinel-2A images. (Liu et al., 2018), 

employed Sentinel-1A, DEM, Landsat-8, and Sentinel-2A images were used to determine the type 

of forest using the RF algorithm. 

(Zhang et al., 2017), evaluated different bands of Sentinel-2A images and compare the index-

based classification with the SVM algorithm to classify the different regions in these images into 

four classes. (Appiah Mensah et al., 2019), four different types of remote sensing images (Landsat-

4, Landsat-7, Sentinel-2A, and Worldview-3) were applied and classified using machine learning 

algorithm to detect the change in Ghana. While the methods based on deep learning use the 

developed deep learning models. 

(Timilsina et al., 2020), used CNNs for urban tree cover changes in Australia using the LiDAR 

data. (P. Liang et al., 2018), also used Stacked Denoising Auto Encoder (SDAE) to classify remote 

sensing images, which showed that SDAE outperforms SVM and ANN. (Luo et al., 2020), 

proposed a hybrid convolution neural network (H-ConvNet) to improve the performance of urban 

land cover mapping using Sentinel-2A images. 

At the end of this study, using 10-meter-resolution Sentinel 2 multiple times data, the NDVI index 

was calculated to study vegetation changes, and the NDVI-based supervised classification was 

performed to classify vegetation cover in order to determine land change. 
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3.  Methodology 

 

Figure 6. Methodology flowchart followed. 

 

There were four stages to the project.  The first stage was a literature review for the use of remote 

sensing techniques in the study of urban vegetation maps. Then, in order to proceed with satellite 

image acquisition, the study area was chosen. Geographic information system software, QGIS® 

3.22.4 (Białowieża), was used to process the images. Finally, the results were gathered, analyzed 

and presented. The methods utilized in the project are described in full below. 

3.1. Study Area: 

Budapest was selected for this study  .The study period is 5 years from 2017 to 2021, from April 

to December each year. 

Study area general description: 

The study area is Budapest, see Figure 7, the capital of Hungary, it is located in the north-central 

part of Hungary, it is one of the most economically important cities in Eastern Europe, and it serves 
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as Hungary's undisputed political, administrative, and cultural hub. Located along the Danube 

River, which crosses the city in a north-south direction, and divides it into western (Buda) and 

eastern (Pest) parts (Péter, 2021). According to the Hungarian National Statistical Office, the total 

population is 1.7 million people living in 525 square kilometers, which means more than, 3200 

people per square kilometer average population density. This number varies greatly between the 

districts of the city. Also, the general built-up area is 52 percent, which could increase with time. 

The city is divided into 23 districts (Buzási, 2022), which differ slightly in terms of land use 

and vegetation cover but differ radically in urban areas. It should be noted that the Buda side (the 

Danube's right side) has far more green areas than the Pest side. In Pest, urbanization has increased 

and flourished greatly due to the nature of the flat terrain suitable for urbanization, unlike Buda, 

for which there is a delay in urbanization due to rather a complex terrain and mountains, but from 

another point of view, mountains and hills covered with forests contribute greatly to relieving the 

summer heat and maintaining fresh air. 

 

 

 

 

 

 

  

Figure 7. Budapest location. A: Location of Hungary.  

B: Location of Budapest in Hungary. Source: Created by the author. 
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3.2. Acquisition of Satellite Data and Preprocessing 

For this research, Sentinel-2 images were used due to the open-access facility, high resolution, 

and temporal availability. The datasets were downloaded from the website European Space 

Agency (Copernicus) (https://scihub.copernicus.eu/), which is the European Union's Earth 

Observation Program, looking at our planet and its environment for the benefit of Europe’s 

citizens. The specifications of Sentinel-2 bands used in this study are presented in Table 2 (ESA, 

2020a). 

Table 2. The datasets and bands specifications used in this research. 

Satellite Band Resolution Central wavelength (nm) Wavelength (nm) 

Sentinel 

2 

B02 - Blue 10 m 492.4 458 - 523 

B03 - Green 10 m 559.8 543 - 578 

B04 - Red 10 m 664.6 650 - 680 

B04 - NIR 10 m 832.8 785 - 899 

 

Images were downloaded for all months from April to September from 2017 to 2021, except 

for some months, where the cloud coverage did not provide any acceptable visibility of Budapest 

Table 3. 

Table 3. Images of the missing months. 

Year Month 

2017 April 

2018 
May 

June 

2019 May 

2020 June 

 

 

https://scihub.copernicus.eu/


17 

 

 

Figure 8. is an example of satellite images that cannot be used for processing. 

 

Figure 8. An example of an image that cannot be used for processing.  

 

The best available Sentinel-2 images were downloaded at Level 2A, except two images were 

downloaded at Level 1C, see Table 4. Where level 1C is a pre-processed product providing Top-

Of-Atmosphere (TOA) reflectance with geometric corrections. The level 2A Bottom-Of-

Atmosphere (BOA) reflectance is obtained by processing the product from Level 1C, to remove 

any intervening atmospheric effects from the Sentinel images (ESA, 2020b). 
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Table 4. Datasets used from Sentinel-2 satellite. 

Year Month 
Day 

Level 2A Level 1C 

2
0

1
7 

May 28  

June 14  

July  29 

August  11 

September 05  
2

0
1

8 

April 28  

July 14  

August 08  

September 30  

2
0

1
9

 

April 20  

June 27  

July 17  

August 21  

September 22  

2
0

2
0 

April 24  

May 22  

July 28  

August 25  

September 14  

2
0

2
1 

April 24  

May 09  

June 16  

July 08  

August 10  

September 06  
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3.3. Preprocessing 

3.3.1. Atmospheric correction 

The Dark Object Subtraction (DOS) method was used for atmospheric correction of Sentinel-2 

Level 1C images, using the QGIS® plugin SCP (Semiautomatic Classification Plugin).  Dark 

object subtraction (DOS) is an image-based technique based on the premise that certain pixels in 

the image are in complete shadow and that their radiances received on the satellite are due to 

atmospheric scattering (path radiation). This assumption is coupled with the fact that very few 

targets on Earth's surface are completely black, so an assumed minimum reflectance of one percent 

is better than zero percent (Chavez, 1996). 

DOS looks for the darkest pixel value in each band. Any number larger than zero must be due 

to atmospheric scattering, assuming dark objects do not reflect light. By removing this value from 

each pixel in the band, the scattering is erased. This simple technique works well for haze 

correction in multispectral data, but it is not suitable for hyperspectral data (Jadhav & Singh, 2018). 

There is another way to apply the correction in addition to that, the software is Sen2cor, which 

is provided by the European Space Agency (ESA). “It performs the atmospheric, terrain, and cirrus 

correction of TOA Level 1C input data, to achieve BOA Level 2A product” (ESA, 2020c). 

3.3.2. Cloud removal 

Cloud removal is a major pre-processing step for remote sensing because it has significant 

negative effects on data processing for many remote sensing applications such as classification, 

change detection, etc., as it obscures and prevents obtaining a clear view from the Earth's surface 

for the majority of all-optical sensors, so, it is critical to be able to reconstruct the information of 

the cloud-contaminated Earth (Ozkan et al., 2018). 

Traditional cloud removal can be divided into three classes (Shen et al., 2015) which are, 

respectively, spatial-based methods, spectral-based methods, and multi-temporal based methods. 

Spectral-based methods use the bands with intact information as a reference to reconstruct the 

bands' missing information, by establishing the link between bands (Shen et al., 2015).  
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By creating polynomial models between bands, some spectral-based methods overcome this 

challenge. The results of spectral-based methods offer a good visual effect and accuracy in general, 

but they can't handle situations where all bands are missing information. 

For all bands, spatial methods can handle missing information. They presume that the missing 

information and the rest of the information have the same statistical law and geometric structure, 

allowing the missing information to be reconstructed from the rest of the information. Missing 

information can be reconstructed for all bands using spatial-based algorithms, although they can 

only handle missing areas of small sizes (J. Zhang et al., 2015). 

Multi-temporal-based methods reconstruct missing information using homogeneous data from 

other times as a reference. It outperforms the above two methods in the reconstructing of large 

missing information. (Lorenzi et al., 2013). 

Because satellites can revisit the same area at different periods, the multi-temporal data acquired 

provides complementary information. This may be used to reconstruct densely clouded areas (Y. 

Zhang et al., 2019). 

In the remote sensing image sequences, the temporal-based methods presume that the ground 

objects' category and geometric positions seldom change during short time periods (Gao & Gu, 

2017). 

Recently, some deep learning-based multi-temporal cloud removal methods have been 

proposed. For example, (Sarukkai et al., 2020) introduced the deep neural network in the multi-

temporal cloud removal mission. For a small number of images, it is possible to discard the clouds 

manually for instance (Wilson & Sader, 2002). 

Based on the available data, available tools, and the number of images, a manual method was 

used to remove the clouds, see Figure 9, which depends on replacing the clouds' areas with another 

cloudless image. 
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Figure 9. Cloud removal flowchart followed. 

The working methodology of the used method is as follows: 

1. Spatial detection of clouds' areas. 

A Shapefile file was created and digitized for the clouds' spatial areas. 

2. Converting the clouds' areas from Vector to Raster. 

Converting the Shapefile to a raster image, where it becomes possible to create a mask for the 

areas of the cloud. 

3. Create a cloud cover mask. 

When the mask was created, a problem was faced due to an error in the SCP (Semiautomatic 

Classification Plugin), where the areas of the clouds have no data values, and they are supposed to 

be 0. So, Fill no data instruction from QGIS was used to replace the No data values with 0. 

4. Create a mosaic. 

After that, mosaics were made, and cloudless images were obtained. 

Target images from a period of time were used as close as possible to the reference image, and 

in the absence of this, target images 2021 were used for the same month. Table 5 shows the images 

that contain the clouds, and the target images to fill where the clouds are. 
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Table 5. The images that contain the clouds, and the target images. 

Reference Image Target image 

Year Month Day Year Month Day 

2017 May 28 2020 May 22 

2017 June 14 2017 June 24 

2017 September 5 2021 September 6 

2018 July 14 2021 July 8 

2021 April 24 2020 April 24 

 

 

Figure 10. The image that used to fill in the gaps for the month of June.  

 

On the 6th of June 2017, the target image does not cover the entirety of Budapest, but it covers 

the place of clouds, so it was used Figure 10. 
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The clouds were removed from the images shown in Table 5. Figure 11, shows a part of 

Budapest before and after the clouds were removed for the image on 05/28/2017. 

  

 

Figure 11. A part of Budapest before and after the clouds were removed for the image on 

28/05/2017. 

 

3.4. Processing 

The raster files of the bands obtained from the previous step were used to calculate Normalized 

Difference Vegetation Index (NDVI). All the calculations were processed in the geographic 

information system software QGIS® 3.22.4 (Białowieża). 

3.4.1. NDVI 

The NDVI is one of the most often used indicators of vegetation, it provides pixel-level 

information on the existence of vegetation, as well as the quantity and quality of vegetation (Orhan 

et al., 2014).  The NDVI index range is between -1 and +1, a higher NDVI index value means a 

higher concentration of vegetation on the ground (Al Shaikh, 2015). In general, a negative NDVI 

index value denotes non-green areas such as barren, river, sea, and built-up areas, whereas a 

positive value denotes green areas (Abdullah et al., 2019). 
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In addition, the NDVI value may also be used to determine the health of plants. Because it is 

expected that healthy plants will have higher NDVI levels than unhealthy plants (Phan et al., 2020). 

Because vegetation reflects strongly in the near-infrared bands and absorbs strongly in the red 

bands, NDVI is calculated using the reflection of vegetation in both the near-infrared and red bands 

of an image (Mahajan & Bundel, 2016). NDVI was calculated using the Equation 3 , proposed by 

Kriegler (1969) (Huang et al., 2021). 

 
𝑁𝐷𝑉𝐼 =

NIR − RED

NIR + RED
 )3) 

   Where NIR [Band 8] and RED [Band 4] represent the near-infrared and the red band of Sentinel-

2A image product, respectively with a resolution of 10 m. 

In this study, NDVI images were calculated for all months to be studied (April to December) 

for all years (2017 to 2021) in order to create a time series of vegetation change over time. After 

calculating the NDVI images, the images were clipped relative to the Budapest boundary. 

3.4.2. Classification 

Before performing a classification, the NDVI image has been reclassified into five classes in 

Table 6 in order to perform the NDVI image-based classification. 

Table 6. NDVI reclassified image classes. 

Class Number 

Water 1 

Built-up area 2 

Grass 3 

Shrub 4 

Forest 5 

 

The images were classified by Orfeo ToolBox (OTB) using the supervised classification 

method and the algorithm Shark Random Forest (Shark RF). This was done with the help of the 

reclassified NDVI image. 
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Shark Random Forest: 

Random Forest is a supervised machine learning technique that is made up of many decision 

trees (Tempa & Aryal, 2022). For each pixel, Random Forest's algorithm generates a number of 

decision trees, after that, each of these trees decides the class that the pixel should be classified to, 

and then the classification class is chosen for the pixel that gets the largest amount of choices from 

the trees (Belgiu & Drăgu, 2016). 

 Shark Random Forest's algorithm is effective and accurate compared to other classification 

methods, Shark Random Forest's algorithm is superior to Random Forest's algorithm in the ability 

to benefit from the prediction capabilities of the Shark implementation (Boret & Cesaro, 2019). 

Different training samples were selected for each image, but in general, the number of training 

samples ranged from 65 to 85 by the digitization of specific polygons. Each training field was 

assigned a number from 1 to 5 representing land cover classes include forest, shrub, grass, urban 

and built-up areas (residential, industrial, transportation, and, roads), and water (rivers, lakes). 

The spectral signature defined in the training set is used to classify land cover. Each class is 

determined by what is similar in the training set, according to the digital image classification 

software, the NDVI images are classified into several classes based on the NDVI value (Taufik et 

al., 2019). 

Orfeo Tool Box (OTB) 

OTB is an open-source project for processing remotely sensed imagery, developed in France 

by CNES (www.orfeo-toolbox.org, accessed 10 March 2021). It is an image analysis toolkit that 

is openly available and controllable by other open-source software packages and command-line 

tools. The algorithms implemented in OTB were applied in this work through the QGIS software. 

The algorithms implemented in OTB were applied in this work through the QGIS® 3.22.4 

(Białowieża) software. 

3.4.3. Accuracy assessment 

To evaluate the accuracy of classified image maps, they should be compared to reference data 

that is presumed to be correct (Foody, 2002). 

http://www.orfeo-toolbox.org/
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A confusion matrix was used to assess the accuracy of classification, as well as overall 

accuracy. The classification is not complete until the accuracy of the classification is evaluated 

using the well-known Kappa statistics (Forkuor & Cofie, 2011). 

Overall accuracy 

This accuracy generates the overall results of the confusion matrix, it is obtained by dividing 

the total number of correctly classified pixels (diagonal values) by the total number of pixels 

(Tewabe & Fentahun, 2020). 

Kappa coefficient 

The Kappa Coefficient measures how well classification and truth values agree, This statistic 

is particularly useful for determining the accuracy of predictive models by comparing the 

predictive model's agreement with a collection of manually measured sample points (J.J.Wynne & 

Jenness, 2005). The Kappa index was used to determine the proportion of well-ranked pixels to 

the total number of pixels examined (Congalton, 1991). 

Each kappa statistic value was assessed by adopting Landis and Koch standards (Landis & 

Koch, 1977). Evaluation Criteria Table 7. 

Table 7. Interpretation of Kappa index. 

Kappa statistic Strength of Agreement 

0.00 - 0.20 Slight agreement 

0.21 - 0.40 Fair agreement 

0.41 - 0.60 Moderate agreement 

0.61 - 0.80 Substantial agreement 

0.81 - 1.00 Almost perfect agreement 
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In this study, 100 ground control points were used to validate the classified images by 

measuring the points manually from Google Earth. Table 8 shows the number of ground control 

points measured for each class. 

Table 8. Ground control points. 

Number of points Class 

15 Water 

28 Built-up area 

19 Grass 

19 Shrub 

19 Forest 

 

 

3.4.4. Land change detection 

Land cover and land change are major climatic factors, and remote sensing data studies are 

sometimes the only method to determine these differences (Arévalo et al., 2020), as change 

detection can be used to determine and evaluate changes in a variety of surface phenomena over 

time (Jusoff & Senthavy, 2003). 

The point of determining the change of vegetation cover is to discover each class of vegetation 

cover to which class it will change (Tewabe & Fentahun, 2020). 

Arithmetic differences for the image, Land Cover Classification Comparisons, change vector 

analysis, principal component analysis,  and the differencing of (NDVI) are among the most 

commonly used land change detection methods (H. Zhang et al., 2009). 

In this study, a classification comparison of vegetation cover was used. For each period, the 

areas covered by each land cover class were compared. The GDAL Sieve function was used on 

the land change images to remove small isolated pixels, which removes raster polygons that are 

smaller than a given threshold size in pixels, and replaces them with the pixel value of the largest 

neighbor (Warmerdam et al., 2022). 
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4.  Results and Discussion 

4.1. NDVI 

For the NDVI values categories, it was relied on matching the NDVI images with satellite 

images and matching each class with the corresponding reality to represent the reality as much as 

possible. Depending on the reference categories of NDVI values (Ya’Acob et al., 2014), values 

less than 0 mean that it is water, but as in Figure 12, there are errors in the categories when adopting 

that, so these values were adopted for the land cover classes. 

Built-up area [0 – 0.3] Built-up area [-0.1 – 0.3] 

  

Figure 12. Comparison of NDVI image representation when using different values for Built-up 

area. 

 

Figure 13, Figure 14, and Figure 15, present two images from each year for five years of NDVI 

images of Budapest shown in Table 4, which were calculated from the algorithm in Equation 3, 

after clipping the images to the Budapest borders, they are presented with Geographical projection 

WGS84/UTM zone 34N. 
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2017 

  

2018 

  

Figure 13. NDVI images for Budapest (1/3). 
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2019 

  

2020 

  

Figure 14. NDVI images for Budapest (2/3). 
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2021 

  

Figure 15. NDVI images for Budapest (3/3). 

 

For this study, the three most green urban areas in the city were selected, which are (Margit-

Sziget, Népliget and Városliget), these three areas were studied and the average NDVI was 

calculated in the 100 m², see Figure 16, Figure 17, and Figure 18. 
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Figure 16. Line chart of NDVI values for Margit Sziget. 

 

 

Figure 17. Line chart of NDVI values for Népliget. 
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Figure 18. Line chart of NDVI values for Városliget. 

 

A sudden drop in the value of NDVI was observed on 24-04-2021 in particular, and fluctuation 

in other values in the same year. There is a sharp decrease in the greenness of the image in the 

month of April, see Figure 19, according to the Hungarian Meteorological Service's annual report, 

precipitation in Hungary was a little over 500 mm in 2021, over 20% below average, making it 

one of the driest years, and the average temperature in June and July this year was 22.9 celsius in 

Hungary, the hottest since 1901. 

24-04-2021 24-04-2020 

  
Figure 19. Variation of vegetation cover between April 2020 and 2021 . 
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And because 2021 is the only year that contains images for all months, a three-dimensional 

scene has been created for the three areas mentioned, see Figure 20, Figure 21, and Figure 22, for 

showing an aesthetic character in the display and making it easier to observe the differences 

between them. 

  

  

  

Figure 20. 3D model of NDVI values for Margit Sziget. 
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Figure 21. 3D model of NDVI values for Népliget. 
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Figure 22. 3D model of NDVI values for Városliget. 
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4.2. Classification 

After re-classifying the NDVI images into 5 classes, see Table 9, the training data were created 

by manually drawing the polygons for each class as shown in Table 6, to perform the supervised 

classification. 

Table 9. Classes of the reclassified NDVI images. 

NDVI value Reclassified NDVI 

-1 to -0.1 1 

-0.1 to 0.3 2 

0.3 to 0.7 3 

0.7 to 0.8 4 

0.8 to 1 5 

 

Figure 23, Figure 24, and Figure 25, present two images of each year for the five years of the 

NDVI-based classification images shown in Table 4, and are presented with geographic projection 

WGS84 / UTM zone 34N. 
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2017 

  

2018 

  

Figure 23. Classified images based on NDVI images for Budapest. (1/3).  
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2019 

  

2020 

  

Figure 24. Classified images based on NDVI images for Budapest. (2/3).  
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2021 

  

Figure 25. Classified images based on NDVI images for Budapest. (3/3). 

 

4.3. Accuracy assessment 

The kappa coefficient was calculated to assess classification accuracy based on manually 

measured reference points from Google Earth and the results were as shown in the Table 10. 
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Table 10. Kappa index and overall accuracy. 

Year Month Day Kappa Index Overall accuracy 
2
0
1
7
 

May 28 0.79 0.83 

June 14 0.72 0.78 

July 29 0.81 0.85 

August 11 0.79 0.83 

September 5 0.83 0.86 

2
0
1
8

 

April 28 0.85 0.88 

July 14 0.96 0.97 

August 8 0.84 0.87 

September 30 0.74 0.79 

2
0
1
9
 

April 20 0.62 0.7 

June 27 0.81 0.85 

July 17 0.89 0.91 

August 21 0.8 0.84 

September 22 0.73 0.78 

2
0
2
0
 

April 24 0.67 0.74 

May 22 0.79 0.83 

July 28 0.95 0.96 

August 25 0.79 0.83 

September 14 0.83 0.86 

2
0
2
1
 

April 24 0.57 0.66 

May 9 0.78 0.82 

June 16 0.76 0.81 

July 8 0.94 0.95 

August 10 0.83 0.86 

September 6 0.93 0.95 
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Figure 26. Line chart of the Kappa index and Overall accuracy. 

 

Based on Table 6, all kappa values were good, which indicates a good agreement between the 

classified images and the reference data, except for one which is April 2021, based on the dry year 

and the lack of greenness in this year, see Figure 19. Table 11 shows the confusion matrix for April 

2021, where it is observed that the decrease in kappa is due to errors in matching the forest, shrub 

and grass classes where there is a large error rate, which results from poor vegetation cover in that 

month. 

Table 11. Confusion Matrix for April 2021. 

  Reference Data 

 Class Water Built-up area Grass Shrub Forest 

C
la

ss
if

ie
d

 D
a
ta

 

Water 15 0 0 0 0 

Built-up area 1 27 0 0 0 

Grass 0 1 10 0 8 

Shrub 0 1 3 6 9 

Forest 0 0 7 4 8 
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4.4. Land change detection 

Based on the fact that the images of the month of July are available in all years, the detection 

of the land change every year with the following year was performed in the month of July. Table 

12 shows the land change for the years mentioned. 

Moreover, land change detection was performed between June 2017 and 2021 see Table 12, so 

that it would be possible to judge whether the percentage of vegetation cover in Budapest has 

increased or decreased during these years. 

Based on what Table 12 shows, Vegetation cover increased in 2021 compared to 2017 by 

2.31%, on the other hand, there was a decrease in vegetation cover by 2.12%. As a result, it can be 

said that Budapest became greener in 2021 compared to 2017 by 1.91 ‰, and as an area, Budapest 

became greener by 100.35 ha. 

Table 12. Land change proportion. 

Date Change type 
Land change in 

each class % 

Land change 

range % 

2017 - 2018 
Vegetation to Non-Vegetation 1.22 

5.08 
Non-Vegetation to Vegetation 3.86 

2018 - 2019 
Vegetation to Non-Vegetation 2.44 

3.26 
Non-Vegetation to Vegetation 0.82 

2019 - 2020 
Vegetation to Non-Vegetation 0.86 

1.09 
Non-Vegetation to Vegetation 0.23 

2020 - 2021 
Vegetation to Non-Vegetation 3.04 

3.77 
Non-Vegetation to Vegetation 0.73 

2017 - 2021 
Vegetation to Non-Vegetation 2.12 

4.43 
Non-Vegetation to Vegetation 2.31 
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Figure 27. Line chart of land change. 
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Figure 28. Budapest land change in July between each year and the following year. 
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Figure 29. Budapest land change between 2017 to 2021 June. 

 

The districts of Budapest were studied in terms of changes. Figure 30, shows the changes for 

all districts. It was observed that only six districts became greener. Table 13, Table 14, shows the 

values for the top three districts, where the XXIII (23) district was the most district has become 

greener. 
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Figure 30. Vegetation changes of Budapest districts. 

 

Table 13. Changes in the top three districts in Budapest. 

District Change (ha) 

XXIII 451.35 

XVII 330.94 

XVIII 271.7 

 

Table 14. Changes in the top three districts that have become greener in Budapest. 

District Became greener (ha) 

XXIII 211.07 

XVIII 191.68 

XVI 15.02 
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5.  Conclusion 

Remote sensing is a very effective tool for monitoring vegetation cover quickly and effectively 

over large areas. In this study, the calculated normalized difference vegetation index (NDVI) 

values from the Sentinel-2 images with a resolution of 10 meters were relied upon, to study and 

assess the vegetation cover of Budapest. As this method has proven its effectiveness in classifying 

and monitoring types of vegetation cover. Sentinel-2 images are also very suitable for use in such 

applications. The behavior and change of vegetation cover have been studied extensively for the 

three most urban green areas in the city, where the year 2021 was generally the lowest year in 

NDVI values, and this is due to the lack of rain and the high temperature in that year. An effective 

cloud removal methodology was reached, also the method of NDVI threshold-based supervised 

classification is very effective for determining vegetation changes. Accuracy was also assessed, 

and all classified images were good except for one in 2021 due to poor vegetation cover in that 

year for the reasons mentioned above. As it was concluded that the city of Budapest is greener 

than before by about 100 hectares, and the district that has become greener is district 18 in Pest. 
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Fig. A 1. NDVI images for Budapest (1/5). 
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Fig. A 2. NDVI images for Budapest (2/5). 
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Fig. A 3. NDVI images for Budapest (3/5). 
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Fig. A 4. NDVI images for Budapest (4/5). 
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Fig. A 5. NDVI images for Budapest (5/5). 
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Fig. A 6. Classified images based on NDVI images for Budapest (1/5). 
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Fig. A 7. Classified images based on NDVI images for Budapest (2/5). 
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Fig. A 8. Classified images based on NDVI images for Budapest (3/5). 
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Fig. A 9. Classified images based on NDVI images for Budapest (4/5). 
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Fig. A 10. Classified images based on NDVI images for Budapest (5/5). 
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