Rectangular pseudopolyconic projection for geographical maps

Regions lying far away from the Equator at medium and higher latitudes, are represented on
geographical maps mostly in conic or pseudoconic projections showing parallels as circular arcs.
The graticule in conic projections is orthogonal, that is meridians intersect parallels
perpendicularly, but this does not hold true of most pseudoconic projections used practically in
geo-cartography (e.g. Bonne projection, ordinary polyconic projection).

There are some pseudoconic projections with orthogonal graticule used for topographical maps
(e.g. "War Office" projection spread in Great Britain in the 19™ ¢., the modified polyconic
applied in Canada [3]). The advantage is that they are not conformal, however their angular
distortion is not significant because of the orthogonality, in addition errors rising from linear and
area distortion cannot increase so much as on maps with conformal projection.

There is reason to apply the orthogonal polyconic projection for geographical maps, if the mean
of the errors may be diminished. To clear up this, first of all it is to be decided, which distortions
are regarded as disadvantageous from the point of view of the topic of the map. If there isn't such
distortion to be avoided, then all distortions (namely linear, angular and area distortions) must be
taken into account in some summarized form; the so called overall mean error criteria serve for
this purpose. The value of these indexes are to be reduced to the possible highest pitch in case, if
more topics with several distortion claim are to be represented on a map series of the same
territory.

The conic and pseudoconic projections show the parallels as circular arcs. The mapping

equations are:

X=p-siny , y=C— p-cosy

where p=p(f) is the radius of the parallel £ on the map; c=c(f) is the distance of the centre of
the paralel £ from the axis X; y={f,A) is the angle of the radius-vector pointing to the image
of the point (f,4) enclosing with the central meridian, which is a strictly monotonically
increasing odd function of A. (/=90°—¢, where ¢ is the latitude; A is the longitude.)

It is known ([1]) that for the conic and the regular pseudoconic projections c=const,

that is the images of the parallels are concentric circular arcs, moreover for the conic projection,
where costant n is the meridian inclination (0< n <1). For the polyconic projection, the radius of
the parallels on the map is: p=tgg. It is a strong obligation, therefore — as it will be demonstrated
later — from the point of view of distortions the polyconic projections are often unfavourable. The
pseudopolyconic projections differ from the polyconic in the radius of the parallels: p=p(f) can
be any arbitrary strictly monotonically increasing function.

Denoted by @ the angle of the meridians and parallels, at the orthogonal projections 6=90°, that
is ctgf=0. On the other hand from the theory of the projectional distortions it is well-known
([1], [5], [6]) that the value ctgé for the pseudoconic projections can be calculated from the
formula
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Thereby, the equality

is valid at the orthogonal pseudoconic projections. It is a separable differential equation;
beginning its solution
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Let us rewrite the function ¢(f) in form c(8)=t(H)+ p (£). Then function t(f) giving the
distance of the intersection of the parallel £ with the central meridian from the axis X on the map
(see figure 1), determines the scale k along the central meridian (4=0):
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As it can often be seen at the pseudoconic projections, for practical purposes the function t(f)
should be chosen as linear: t(f)=t;-arcf. (Further on, the radian value of the angle £ given in
degrees will be denoted by arcé.) So the central meridian is equidistant, and if t;=1, then it is
true scale. (In the case of claim of greater accuracy the function t(f) could be approximated by a
quadratic polynomial t;-f+ t2-8 2.)

Continuing the solution of the above equation:
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The radial function p=p(f) can be chosen linear or nonlinear. On the other hand, depending on
whether the value of the constant in the radial function equals zero or not, the projection can
represent the pole as a point or a line. Approximating p=p(f) by a quadratic polynomial
according to the above the following cases must be taken into account:

a) p=p-arcp, linear radial function with pole as point (central meridian is equidistant)

b) =0t p1-arcs, linear radial function with pole line (central meridian is equidistant)

C) p=piarch+pyarc’f, quadratic radial function with pole as point

d) p=pot prarch+ pr-arc’B, quadratic radial function with pole line

where pp is the radius of the pole line.
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Then the function £ is a rational function, so it posseses an antiderivative.
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So depending on the form of the radial function p=p(f), y can assume the following forms:
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The function f(1) is odd of A, therefore it can be approximated by fiarci+ f-arc®i+ fzarc’A.
The number of terms - mostly two or three - to be taken into account for the projection of a given
map depends on the east-west extension of the territory to be represented.

With the knowledge of radial function p=,p(f), distance c=c(f) and angle y=xf,1) the
overall error in an arbitrary point of the map can be appointed. To this the extremal scales a and b
are needed. Because of the orthogonality their values correspond to the scales along the graticule
h and k . Therefore the index of the local overall error of Airy-Kavrayskiy £ax ([2]) can be
calculated immediately from the scales along the graticule:
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The formula
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gives the value of the Airy-Kavrayskiy's criterion of the mean overall error of Eax on a
geographical quadrangle bordered by the parallels fv and fs as well as meridians Aw and Ae.

-sin # dA dg

Spacing the examined geographical quadrangle by a 1°x1° grid, the values &ax-Sing are
calculated for the grid points. Summarizing them by the binary Simpson formula, dividing it by
the area of the geographical quadrangle and finally extracting the root of it, this results in the
suitably exact approximation of the criterion value Eak.

Further on two geometrical figures of different shape on the earth surface will be examined:

A) The territory of Canada more extended east-west, roughly covered by a geographic
quadrangle between the parallels 45° and 75° N, as well as the meridians 60° and 140° W.

B) The more narrow, but longer north-south territory of the European Union, roughly covered by
a geographic quadrangle between the parallels 35° and 70° N, as well as the meridians 10° W and
30° E.

For comparison these two territories were represented at first on equidistant conic projection of
de I'Isle, then secondly on orthogonal polyconic projection, and at last on orthogonal
pseudopolyconic projection explained before. (See the constituent functions of the two former
projections and the optimal parameters in the appendix.) At the latter projection the radial
function p=p(f) was taken into account in three versions (po=p1-arcf, p=potpr-arcf and
= pr-arc+ p-arc’f); the calculations certified that the radial function of three parameters
(p=pot+ prarc+ p,-arc’f) does not give better result, that is the mean overall error is not
significantly lower. The function f(1) was applied as linear polynomial (f;-arcA), then
polynomials of third (fy-arcA + f-arc®) and fifth (frarcA + foarc®A + fa-arc®A) degree. The
values of Eak attached to the two geographical quadrangle, calculated by downhill simplex
method ([4]) are summarized in Table 1.

Table 1
A) Canada
Extent of geographic quadrangle: 15° <B< 45° (45°N << 75°N)
140°W <\ <60°W
f(1)=f;-arcA | f(1)=fiarcd | f(1)=f;-arcA
+ farc®a + farcia
+ fyarc’A
De I’Isle projection p=potarcs E«x=0.00737 - -
Orthogonal polyconic proj. p=tgf - EAx=0.01818 -
Orth. Pseudopolyconic proj. p=p-arcg EAx=0.02012 | EAc=0.00643 | E,x=0.00642
Orth. Pseudopolyconic proj. p=pot p1-arcs Exx=0.02011 | EAx=0.00637 | E,x=0.00636
Orth. Pseudopolyconic proj. p=py-arcf+ p,arc’s EAx=0.02010 | E5x=0.00635 | E,x=0.00628




B) European Union

Extent of geographic quadrangle: 20° <B< 55° (35°N <9< 70°N)
10°W< A <30°E
f(1)=f;-arcA | f(A)=frarcd | f(1)=f;-arcA
+ farc®a + f-arcia
+ fyarc’A
De I’Isle projection p=potarcs E»x=0.01003 - -
Orthogonal polyconic proj. p=tgf - EAx=0.00625 -
Orth. Pseudopolyconic proj. p=p-arcg EAx=0.00817 | E\x=0.00714 | E,x=0.00714
Orth. Pseudopolyconic proj. p=pot pr-arcg Exx=0.00596 | E5x=0.00449 | E,x=0.00449
Orth. Pseudopolyconic proj. p=p;-arcf+ p,arc’s Exx=0.00588 | EAx=0.00442 | Ex=0.00442

Table 1 shows that on the territories of given size and shape the mean overall error of the
correctly selected orthogonal pseudopolyconic projection is lower than that of the best equidistant
conic projection of de 1’Isle, and that of the best orthogonal polyconic projection. This difference
is evident mainly at the more narrow territory B), where the mean overall error of the polyconic
projection is merely 62.5% of the error of the conic projection, and the error belonging to the
pseudopolyconic projection is less than half of it.

On the wider territory A) the error of the pseudopolyconic projection can be reduced to the 85%
of the error of the conic projection. Conversely, a disadvantageous characteristic at the polyconic
projections clearly appears here, too: the distortion features go wrong apace with broadening of
the of the represented region. This shows itself up at the orthogonal pseudopolyconic so that with
extending of the territory to east-west, it converges to a conic projection.

Comparing the error of the different orthogonal pseudopolyconic projections it is remarkable that
the error of the versions with two parameters (accordingly the version with pole line, equidistant
along the central meridian, and the version with pole as point and with uniformly changing scale
along the central meridian) is practically equal for both territories.

On the other hand the value of the error is influenced by the terms of the polynomial f(1). At the
wider territory the linear polynom is not usable because of the very high error value. Applying a
function f(1) of the third degree (with two terms), the mean overall error diminishes
significantly for both territories. Accommodating a function f(1) of fifth degree, at the wider
region the error can be further reduced slightly.

Doing calculations getting the best pseudopoliconic projection for the two regions, sporadically
negative pole line radius coefficient pp arose. It means that a parallel near the pole is mapped to
a singular point, and the area from this parallel to the pole is not representable. In this case it is
advisable to abandon the environs of the pole.

Summarizing the conclusions drawn from the Table: the orthogonal pseudopolyconic
projection can be offered to representing largeterritories (big countries, parts of
continents, possibly whole continents) lying far away from the equator on geographical
maps. Mostly the radial function with two parameters can be suggested. The version where the
pole is a point is favourable when mapping a region with rather north-south extension,
respectively if the pole itself is represented. The version with pole line is advantageous if the



mapped region is far away from the pole, too, or it extends first of all east-west.

Tables 2 and 3 represent Canada and the European Union on orthogonal pseudopoliconic
projection with pole line and respectively with pole as point.

Appendix

The radial function of the equdistant conic projection of del'lde:
arcg, -sin B, —arcp, -sin 3,
sin 5, —sin f3, ’
sin 5, —sin f3,
arc(ﬂl -/, )

p=potarcf, where p, =

the meridian inclination: n= (f1 and [ are the true scale parallels).

Representing the geographic quadrangle A) (namely fs=45°; n=15° Aw=140°W;
Ag=60°W, covering Canada) the minimal mean overall error Eax =0.00737 turns up when
choosing £ =20.7° and S, =38.0° thatis ¢ =69.3° and ¢ =52.0° (it means pg=0.04546,
n=0.8687).

Representing the geographic quadrangle B) (namely fs=55°; fn=20°; Aw=10°W; Ag=30°E,
covering the Europen Union) the minimal mean overall error Eax =0.01003 turns up when
choosing 1 =26.7° and S, =46.9° thatis ¢1=63.3° and ¢, =43.0° (it means py=0.9872,
n=0.7958).

The radial function of the orthogonal polyconic projection: p=tgf;
the distance C of the centre of the parallel £ from the axis X: c=d{(42 —arch)+p;
the angle y of the radius-vector pointing to the image of the point (f£,4) enclosing with the
central meridian:
=2 arctg[ctg f-sin B-(fy arcA+f,-arc® A)].

Representing the geographic quadrangle A), the minimal mean overall error Eax =0.01818 turns
up when choosing d =0.977121, f; =0.491379 and f, = 0.030661.

Representing the geographic quadrangle B), the minimal mean overall error Eax =0.00625
turns up when choosing d =0.991684, f; =0.497891 és f, =0.024641.

The radial function of the orthogonal pseudopolyconic projection with poleline: p=pp+ o1 -arcs;
the distance C of the centre of the parallel £ from the axis X: C=ti-arcp+p

the angle y of the radius-vector pointing to the image of the point (f,4) enclosing with the
central meridian:

4 f .arcA+ f,-arc’A
7=2-arctg((po+pl~ar0ﬂ) oo A )
Py + py-arcs



Representing the geographic quadrangle A), the minimal mean overall error Eax =0.00637 turns
up when choosing t;=—0.995054, p,=0.008385, »,=1.079275, f;=0.413701, f,=0.027033.

The radial function of the orthogonal pseudopolyconic projection
with pole as point: p=prarcf+prarcp;
the distance C of the centre of the parallel £ from the axis X:  c=t;-arcf+p

the angle y of the radius-vector pointing to the image of the point (#,4) enclosing with the
central meridian:
d

arcp jﬂl f-arci+ f,-arc’a
P+ p,-arcy py-arcf+p, - arczﬁ

y=2-arctg (

Representing the geographic quadrangle B), the minimal mean overall error Eax =0.00442
turns up when choosing t;=—0.994114, p,=0.880601, p,=0.459705, f;=0.591129, f,=0.029848.

The parameter values giving the minimal mean overall errors Eax were calculated by the

"downhill simplex method" ([4]).
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Figures

Figure 1: The structure of the pseudopolyconic projection



Figure 2: Canada on orthogonal pseudopolyconic projection with pole line.

Figure 3: The European Union on orthogonal pseudopolyconic projection with pole as point.

Osszefoglalas

Az Egyenlit6tdl tavol eso teriiletek abrazoldsara tobbnyire a parallelkdroket koriv formajaban
megjelenitd vetiileteket (nevezetesen a valodi és képzetes kupvetiileteket) hasznaljak. Ekkor a
fokhal6zat merdlegessége gyakran elonyos a torzulasok szempontjabol. Ez a tulajdonsag megvan
a valddi kupvetiileteknél, valamint az Gn. ortogonalis polikonikus és pszeudopolikénikus
vetiileteknél.

Az ortogonalis polikonikus vetiiletet korabban topografiai térképeknél hasznaltak. Csak kevéssé
alkalmas kiterjedt tertiletek abrazolasdhoz, mert a torzulasok a kozépmeridiantol tdvolodva
gyorsan novekednek. Ha viszont a parallelkor képének p sugarat a polikonikus vetiiletekre
jellemzd tgf fliggvény helyett egy mas fiiggvénnyel (pl. egy polinommal) adjuk meg, akkor
pszeudopolikonikus vetiilethez jutunk. Legfeljebb méasodfokt polinomot alkalmazva, a torzultsag
lényegesen csokkenthetd.

Egy inkabb K-Ny-i iranyban kiterjedt A) teriiletet és egy E-D-i iranyban megnytlt B) teriiletet
abrazoltunk a de 1'Isle-féle meridianban hossztart6 valodi kupvetiiletben, ortogonalis polikonikus
valamint ortogonalis pszeudopolikonikus vetiiletben. E vetiiletek paramétereit az Eax Airy-
Kavrajszkij-féle atlagos teljes torzultsagi kritérium minimalis értékéhez hataroztuk meg a
szimplex modszer segitségével. A pszeudopolikonikus vetiiletek Eax értékei jelentdsen kisebbek
a tobbi vetiileténél. A pszeudopolikonikus vetiileteken beliil a kétparaméteres sugarfiiggvénnyel
megadottak mar elfogadhatéan pontos kozelitést szolgaltatnak; a kritérium-érték nem csokken
észrevehetden tovabb harom paraméteres sugarfiiggvény esetén.

Az ortogonalis pszeudopolikonikus vetiilet eldnyds olyan foldrajzi térképekhez, amelyek kdzepes
vagy magasabb szélességen elhelyezkedo teriileteket abrazolnak. A torzulasok szempontjabol
hatékonyabban tudjuk alkalmazni, ha a teriilet kiterjedése E-D-i iranyban nagyobb. Ebben az
esetben a poluspontos véltozat (p=p1-arcf+ p,-arc’f) kedvezdbb, féleg ha a polus is dbrazolasra
kertil. A polusvonalas valtozat (o= ppt+ p1-arc) akkor jobb, ha a polustdl tavol es6 vagy K-Ny-i
irdnyban kiterjedtebb teriiletet abrazolunk.



