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Summary: Libraries and researchers face a big challenge: sometimes thousands, millions of maps are being 

conserved in archives to retard deterioration, but this makes it hard to obtain specific knowledge 

of their content, sometimes even of their existence. In recent years, the efforts have increased to 

digitise historical documents and maps to preserve them digitally, make them accessible and allow 

researchers and the general public a less restricted access to their heritage. But maps are more than 

a cultural artifact: they are data. Data about the past that can very well be important for science and 

decision-making today. The problem is, the vast amount alone makes it hard to know what to look 

for. Maps are usually archived and catalogued with limited meta-information, sometimes obscuring 

their actual content. This makes it impossible to find specific information without expert knowl-

edge on history and cartography. Extracting the content, i.e. data, of scanned historical maps is a 

necessity to make the content searchable and to use modern digital tools for automatic processing 

and analyses. To combine data from different maps and compare them with modern geospatial 

data, georeferencing is paramount. This is usually done by hand and needs a lot of time and spe-

cialised training. We explore if and how usable GCP can be found automatically in historical maps 

with computer vision and document analysis methods of today. In this work-in-progress report, we 

use OCR on map labels and geocoding of persisting geographical feature designation for successful 

first experiments. This shows text recognition and vectorisation to be a promising research direc-

tion for large-scale automated georeferencing of historical maps.  

 

Introduction 

Until only few years ago almost any motorist used a road atlas to navigate. They usually 

contained an index of cities, road names or other destinations along with their corresponding 

location in the atlas and the respective map sheet. This index, also called a gazetteer in other 

map types, enables a quick localisation of named places in the map’s respective reference 

system. Recently, gazetteers in this form have become somewhat less common. Instead, we 

now have access to a plethora of geocoding web-services which can be queried with search 

terms to identify and localise almost any location all over the world. 

 Today, historical maps are catalogued according to their metadata and not their content.  

To make spatial queries (in the form of “all 19th century maps showing Hamburg”) or spatial 

analyses possible, they have to be georeferenced (Schröder 2013). To georeference a scanned 

map, matches between a set of so called ground control points (GCP) in the image and actual 

geographical locations have to be found. 
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 After automatically extracting and recognising place names from a map and querying their 

respective locations in aforementioned geocoding services to obtain geocoordinates, we are 

able to automatically georeference scanned historical maps. The goal is to thus enable batch 

processing of large series of maps, such as late modern period land surveys. To make automatic 

handling feasible with minimal human input, homogeneous graphical quality and design is 

required. Therefore we also investigate which properties of maps are necessary to allow this 

approach to be used. 

 

Related work 

Automatic matching of similar features in different images is a classic task of computer vision 

and has been thoroughly researched for spatial data in photogrammetry and applied to historical 

data (Chen et al 2016). Of special interest is automatic registration of heritage aerial images 

with modern day data, which are hard to match, since they use different colour spaces (black 

and white vs. colour images), often have quite different quality (analog vs. digital images, old 

images scanned from photographic materials), but especially because a significant change in 

the environment and built structures have to be expected. To overcome these issues Cléry et al. 

(2014) use line feature matching to register old aerial images with current georeferenced 

orthoimages, to georeference the historical data. 

 Interesting research has been done by Chen et al. (2004) into registering orthoimages with 

vector data, by automatically extracting road intersections from the raster image and matching 

those to vector data of the same scene for very high precision results. 

 To generalise this approach to unknown scenes Briggs and Li (2006) employ topological 

point pattern matching to find road intersections extracted from a raster map in a much larger 

dataset of vector data. 

 Wolter et al. (2017) have proven that place names in maps are very descriptive and can be 

used for identification and localisation of settlements and river tributaries. By using spatial 

reasoning, they have developed a method to automatically identify a river network in a map. 

So far there has been limited research into automatic methods for extraction of control points 

to be used in registration and georeferencing that take the special difficulties of early modern 

era maps that are hand-drawn or lithography-printed, into consideration. In one prime example 

(Heitzler et al. 2018), the map boundary and grid lines are automatically detected by template 

matching and Hough line detection and subsequently matched with coordinate labels to 

automatically rectify and georeference the Siegfried map. 

 It remains open, how to deal with maps that don’t show grid lines, are too cluttered to extract 

them successfully, are drawn with unknown projection and datum or are distorted so extremely 

that given coordinates can’t be trusted. 

 

Problem Definition 

For most computer vision tasks, high-contrast points in images are used to build robust feature 

descriptors, which have over the years been the basis of increasingly better performance on 

detection and classification tasks. Increasingly complex object representations enabled by 

machine learning accurately recognize objects in cluttered scenes. The special property of maps 

on the other hand, which distinguishes them from almost every other computer vision task, is 

that they have already been optimised for human use. In order to improve readability of maps 
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in spite of a high density of information, mapmakers have developed abstract and generalised 

coding, almost completely removing latent information from the image texture. The steep 

gradients on the variety of overlaid lines, symbols and region boundaries make a map a homo-

geneously high contrast, high clutter image with ambiguous repeating patterns prohibiting the 

use of state-of-the-art computer vision descriptors for uniquely defining objects. 

 The biggest challenge for the application computer vision methods on topographic maps is 

that the possible figure of interest (i.e. foreground) exhibits similar properties to the (back-) 

ground. In particular, when we are interested in text content, it is very hard to distinguish from 

the remaining content of the map, such as contour lines, roads, symbolic features and building 

outlines.  

 A first step for figure-ground-segmentations can be the use of colour information to separate 

multiple feature layers (e.g. bodies of water in blue, contour lines in brown, writing in black) 

of the map. But since maps are usually drawn with only a limited palette of colours this will 

still result in overlapping features. This is an expected problem especially with old maps 

produced in lithography. Since creation of multiple printing plates immensely increased the 

production cost without significantly increasing readability, it is quite common to see maps 

with only three to four colours.  

 The resulting ambiguous use of (most commonly) black colour for writing as well as grid 

lines, special symbols and building outlines can make a complete figure-ground-segmentation 

impossible and severely impairs the quality of optical character recognition (OCR) results. 

 Machine-reading in maps poses some unique problems as a result of the apparently arbitrary 

positioning of text labels. While document analysis methods can usually rely on homogeneous 

line and character orientation and spacing to resolve ambiguities in character recognition, the 

page segmentation on maps is much harder: we have to deal with multiple fonts in multiple 

sizes, sometimes widely spaced and overlapping each other; text labels can have unusual ori-

entations and even be curved to follow e.g. the path of a river. All of these make it especially 

difficult to know which two (or more) labels belong together when a designation has been split 

over multiple “lines” and placed in seemingly unrelated locations. 

 Finally, there are some unique problems with historical maps: some features are not present 

anymore in modern data, sometimes the orthography has changed and historical toponyms 

might not be in use anymore, all preventing reliable matching of place names. 

 

Method 

Our processing pipeline works in five consecutive steps: firstly, image preprocessing to equalise 

different graphical quality, then detection of text labels with their bounding boxes. Afterwards 

OCR on said text labels results in actual text strings. In the fourth step, geocoding by querying 

for recognised text strings thus returns geo-coordinates. Finally transformation and rectification 

is accomplished with the centers of the bounding boxes and geocoded coordinates as GCP-

pairs. These steps will be described in more detail in the following section. 

 

Map preprocessing 

As a first step, we apply automatic white balancing by histogram equalisation, to limit the 

discolouration by paper degradation and allow all further processing steps to work on the full 

range of colour values. 
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 Maps are commonly printed with a small palette of three to four colours, designed to be 

easily told apart by the human eye. But when scanning these maps with high resolution and 

subsequent rasterising, sharp colour transitions get transformed into gradients, resulting in 

image files with a lot more colours. This makes colour quantisation a non-trivial effort, with 

the risk of losing too much information, especially on the edges of text, which need to be 

preserved for successful application of OCR. Three-dimensional k-means clustering on the 

RGB-space showed unconvincing results because of run-time complexity on large map images 

and large differences in cluster sizes (e.g. many black pixels, very few blue pixels in many 

images). 

 Instead, our approach uses selective gaussian blur to eliminate noise from image 

compression, smudge hachure lines into a uniform colour and merge the printing dots on very 

high resolution scans. After an unsharpening filter to revert blurring of edges, a simple but 

inaccurate colour separation can be obtained by thresholding. 

 The resulting figure-ground-segmentation remains incomplete, since by colour only some of 

the features can be removed, while many map elements sharing the same colour as the desired 

text remain. Examples include roads passing through their designations as well as grid lines and 

building outlines intersecting place names. Humans have little difficulty separating text from 

underlying clutter, since their visual perception can rely on Gestalt-principles (Koffka 1935), 

in particular the law of continuity and the law of past experience, which have yet to be success-

fully formalised in a computer system.  

 Some research in text-graphics-separation has been done to tell these conflicting figures, 

such as text characters and lines, apart on maps, but so far showed unconvincing results even 

on relatively “clean” datasets, such as computer generated maps from digital vector data 

(Chiang and Knoblock 2006). 

 

Text Extraction 

Notwithstanding the unsatisfactory segmentation, machine learning systems have successfully 

been trained to detect text in cluttered scenes (Zhou et al. 2017). There has been some research 

into the peculiarities of detecting text in maps, in particular multi-oriented text in a single 

document (Roy et al. 2012) and curved text lines (Seytre et al. 2019). 

 With Strabo, Chiang and Knoblock (2014) have proven the capabilities of their system to 

robustly and quite accurately deal with aforementioned combined issues effectively to auto-

matically extract the text layer from certain maps and localise individual text labels within.  

We employ Strabo’s text label detection command-line tool in our experiments without any 

tuning of parameters or additional training. 

 The resulting oriented bounding boxes of found text labels in a map are then rotated to be in 

horizontal orientation and fed to a text-recognition system as individual pages. 

 We use tesseract2  with its python wrapper3, a well-established open source OCR engine, 

with a multitude of readily-available pre-trained language models. It is necessary to specify the 

language to be detected, because tesseracts training makes character detection context sensitive. 

We use the available pre-trained legacy models, because the newer long short-term memory 

model does not allow whitelisting of characters, which we deem necessary to avoid erroneous 

detection of diacritics and special characters in the clutter of overlapping noisy map features. 

                                                             
2 https://github.com/tesseract-ocr  
3 https://github.com/sirfz/tesserocr  
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Specifically, we used the pre-trained language model for German and English language without 

any further additional training and no dictionary for subsequent correction of OCR results. 

 It is expected to obtain OCR results with only limited quality on maps (Chiang et al. 2016) 

and it is hardly possible to get accurate transcription without intense manual intervention. But 

our goal is not to fully digitise the map content: we only require a small number of correctly 

identified text labels, with a character recognition precision high enough to successfully match 

these words to a dictionary of place names.  

 

Geocoding 

Myers et al. (1996) have already shown the possibility of using gazetteers as dictionaries to be 

able to find and verify text strings in noisy maps, which can be hard for OCR to correctly 

recognise with a mere bottom-up method. In place of a dictionary of all place names of potential 

regions our map might be located in, which can easily contain millions of entries (ca. 2.3 million 

domestic toponyms are listed by the United States Board on Geographic Names4), we employ 

the web request APIs of OpenStreetMap5 (OSM) or GeoNames6 for matching and, where 

possible, localisation of detected place names. Geographical coordinates of identified toponyms 

obtained by these geocoding services can later be used for automatic georeferencing. 

 Text labels of feature designations are usually placed somewhat arbitrarily in the vicinity of 

a point feature (such as a city on large scale maps, or special buildings on small scale maps), 

along a linear feature (streets or rivers) or within a region (district, geographical area such as 

landscapes or forest areas or land uses like parks). This makes text labels an inherently 

imprecise indicator of location. Averaging displacements and disturbances of these location 

hypotheses over multiple candidate points is required to obtain a good match for the general 

location of the map. 

 Generally speaking, different features can be utilised on different scales: small scale maps 

(1:25.000 and smaller) show street names or point features (churches, plazas), which can lead 

to very high accuracy, whereas for large scale maps we have to make do with more vague 

feature designations and rely on averaging out of label displacements and unclear centre points, 

e.g. of districts. In turn, geodatabases usually store the geographical extent of these larger 

features, which can serve as a measure of uncertainty for localisation. 

 There are some special challenges connected to the matching of historical places and 

toponyms to modern-day databases: some old villages may have been incorporated into cities 

and only remain as street names. Local place names of regions, like the common name of some 

valley may not exist as OSM features but may be discovered in street names or an old inn. 

Sometimes, on the other hand, both the region and a more modern feature exist distinctly but 

quite close to each other in modern maps. Just as well, former region names might stem from 

old rivers or brooks, and are now found at multiple different positions along the remaining river 

run, sometimes many kilometers away. All of these cases lead to multiple hypotheses of 

locations generated for each detected toponym in a historical map, which will then have to be 

filtered for the best fitting solution. 

 

                                                             
4 https://usgs.gov/geonames/domestic-names 
5 https://nominatim.openstreetmap.org 
6 https://www.geonames.org/export/geonames-search.html 
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 Figure 1. Red: all hypotheses for recognised place names. Green: successful density-based clustering.  

Background map: OpenStreetMap 

 

Control Point Validation 

Especially when recognised designations in a map are not complete because of OCR errors and 

designations are split over multiple text labels with a commonly used pre- or suffix (e.g. 

“new…”, “...county”), the place name queries become ambiguous and lead to localisations in 

far-apart places, even different countries. We can’t rely on the ordering of results, usually by 

size or importance, of geocoding web services either to help us in correctly identifying, for 

example, a city with a commonplace name. To illustrate, Figure 1 shows in red all alternative 

hypotheses of place locations after geocoding toponyms recognized in a USGS map of Aitkin, 

Minnesota. In our test dataset of US maps this effect was stronger than in the German maps, 

possibly stemming from a stronger historical diversification of dialects and thereby toponyms 

in Europe. 

 Since even a small number of far off outliers can prohibit successful rectification of a map, 

we have to establish the correct subset of found hypotheses for further use. We can assume 

spatial proximity of “correct” localisations (that is coordinates actually representing the specific 

place in the map), suggesting the use of clustering schemes. Considering the number of outliers 

can well be in the order of magnitude or even exceed the number of inliers, this leads to inad-

equate results from common methods like maximum likelihood estimation of Gaussian param-

eters or random sample consensus. 

 To overcome this problem, we employ a clustering scheme devised by Ester et al. (1996): 

density-based spatial clustering of applications with noise (DBSCAN). DBSCAN groups points 

by determining local neighbourhoods. All points which have a minimum amount of neigh-

bouring points within a specified distance, will be put in a cluster with said neighbours. By the 
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transitive property, a cluster can extend to neighbours of neighbours to include remote points 

on the border of the resulting spatial cluster. In our case, location hypotheses obtained by the 

previous geocoding step are clustered with a minimum distance set to a value smaller than the 

maximal extent of maps in the dataset, which can be inferred or estimated from the scale or 

sheet size, which are generally known a priori. As a result, we choose the most promising cluster 

by the greatest cardinality and use its constituents as GCPs for the following rectification step. 

The five remaining green dots in Figure 1 show the effect of said clustering and a successful 

removal of all outliers. 

 

Transformation 

When the map to be transformed uses a known projection and is planimetrically correct, a first-

order polynomial or affine transformation should be sufficient for rectification. For this we need 

at least three valid GCPs. With most maps from the 20th century we don’t expect any major 

distortions within a map sheet and a low order polynomial transformation should give reason-

able results. For maps with unusual projections or very large scale, a higher order transfor-

mation can help to warp the rectangular map to its correct geographical extents, in turn requiring 

more GCPs. 

 Distorted maps need even more complex transformations (e.g. rubbersheeting) which in turn 

require a lot of accurately placed and evenly distributed GCPs otherwise errors can be amplified 

in sparsely covered areas. 

 For our uses, we want a method that can handle some single erroneously predicted locations 

without losing accuracy at correctly placed GCPs, which lead us to run our experiments with 

the thin plate spline (TPS) transformation. 

 This more flexible transformation methods is in fact not necessary for the datasets we use, 

because they are already more or less in the correct orientation and projection, but we use them 

to test whether our approach can work in general cases and its robustness to misplaced GCPs. 

 

Evaluation 

Dataset 

We explored the suitability and performance of our approach on the following selection of survey 

maps: Firstly, German survey maps of Hamburg in 1 : 25 000 from 2002–2004 (TK25_20) in 

German language latin script including all-capitals, italics and left-leaning italics. They have  

a palette of three to four colours (black text, buildings, biome pattern symbols, roads, green 

woodland, blue bodies of water and corresponding name text, brown topography isolines and 

corresponding height labels. The black text includes districts, hamlets, special land uses, named 

regions (swamps, state forests, etc.) and some major roads. Another set of maps of overlapping 

area, but from 1946 to 1959 and previously binarised into low-resolution black-and-white images 

(TK25_19). Two additional similar colour scanned maps in 1 : 50 000 from 1909 and 1915 were 

used which only use black colour (TK50). 

 For comparison we process a selection of USGS historical topographic maps from the years 

1953–1985. They use latin script in the English language including all-capitals fonts and have  

a palette of five colours (red grid lines with corresponding designations, brown topography 

isolines, green vegetation, blue bodies of water and corresponding text, black administrative 

boundaries, text, symbols (i.e. mines), roads). The black text designates hamlets, county border 
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markings, townships, land use (state forests, wildlife preserves, etc.), special point features 

(lookout towers, airstrips, gravel pits, etc.). Since USGS maps covering rural areas exhibit less 

clutter, we arbitrarily selected a handful of maps from the American north, mostly Minnesota. 

We found maps in 1:100.000 scale (USGS100_MN) to give the best results, since smaller scales 

don’t contain many place names for many rural areas of the United States. Conversely, the bigger 

1 : 250 000 (USGS250) scale engenders a lot of clutter and overlapping features with compara-

tively small font sizes.  

Some maps use the margins of the map to indicate neighbouring places which lie just outside 

of the map area, often hinting at where a certain road leads. This writing on the margins, showing 

little clutter in the background, is happily recognised by the OCR engine, which can lead to 

significant distortion (see Figure 2). The same happens with other writing outside of the map 

area, such as the map title, issuing authority, or other meta-information. Since there is no easy 

remedy to this without knowing the exact map extents, we remove the map margins from the test 

images, in line with a future application of seamless stitching of georeferenced survey map 

collections. 

 Figure 2. Misplaced GCP because of a recognized place name on the map margin.  

Transformed Map: TK50 Langenhorn (1909) Background map: OpenStreetMap 

 

Results 

 Table 1 shows the results for each processing step for the previously described maps. The 

second column lists the number of detected labels recovered from Strabo for each sheet in the 

map. The third column shows the number of labels which were recognised by OCR well enough 

to return results when querying OSM. Next we list the number of all alternative location 

hypotheses returned by OSM. In the fourth column the number of GCPs are listed which remain 

after removing outliers with DBSCAN. Finally, we show from which of these maps a georef-

erenced output image could be generated. 

 In total, about 38% of all maps were successfully georeferenced. For some maps enough 

correct GCPs were placed, but some incorrect ones led to so much distortion, a valid transfor-

mation solution could not be determined. Surprisingly, the oldest maps (TK50) delivered the best 

results (Figure 5). Even after 100 years of intense urban development, enough toponyms could 

be correctly identified to accomplish quite accurate georeferencing. Only a small inset map piece 

had to be cut out and could not be correctly localised itself. 
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Table 1. Results comparison for each dataset 

Dataset  

(# of sheets) # labels # readable 

# after 

geocoding 

# after 

clustering 

successfully 

georeferenced 

TK25_19 (13) 77, 80, 104, 140, 

122, 91, 181, 121, 

156, 239, 107, 176, 

136  

4, 6, 5, 8, 3, 

6, 19, 5, 12, 

14, 5, 2, 5 

19, 15, 17, 20, 

16, 15, 97, 12, 

46, 58, 14, 9, 23,  

0, 0, 2, 5, 0, 0, 6, 

0, 2, 5, 0, 0, 0 

no, no, no, yes, no, 

no, yes, no, no, 

yes, no, no, no 

TK25_20 (6) 189, 224, 225, 406, 

265, 211  

25, 13, 7, 19, 

18, 24 

79, 37, 23, 53, 

54, 112 

12, 4, 0, 8, 10, 2  yes, yes, no, yes, 

yes, no 

TK50 (3) 83, 70, 117 7, 6, 9 19, 9, 29 3, 3, 2 yes, yes, no 

USGS100_MN (4) 119, 82, 133, 46 10, 3, 23, 8 58, 21, 137, 44 0, 0, 5, 0 no, no, yes, no 

USGS250 (3) 320, 177, 77 36, 13, 5 180, 83, 22 22, 4, 0 yes, no, no 

 A good fraction of TK25_20 maps were successfully localised as well. Because of split labels 

at more complex descriptions like “highway to Oldesloe” or “belonging to Rellingen” some 

wrongly attributed toponyms lead to distortions. With USGS maps the biggest issues was 

detecting township or county labels, whereas the smaller settlement labels, often smudged 

together because of low resolution and colour bleed, could not be recognised and thus geocoding 

returned wrong locations. 

 

OCR 

Experiments show that the label extraction regularly produces too small bounding boxes for the 

text labels, often cutting half of the first and/or last character of a word (Figure 3, left). This seems 

to happen predominantly with italic fonts. Conversely, sometimes we see too large, ill-fitting 

bounding boxes with multiple words from different labels, which Chiang et al. (2016) attribute to 

clutter from non-text symbols in the vicinity of correctly detected text (Figure 3, right). 

 A related, albeit expected, problem is that sometimes designations are split over multiple 

labels, because of wide spaces between words or a split over multiple lines, which makes it hard 

to combine them again to the correct place names. When words are split in this way their matches 

from gazetteers become ambiguous, but the spatial clustering proved to be very helpful in 

correctly verifying most of these cases. 

 Overall though, text label detection worked surprisingly well with most of the maps in spite 

of varying graphical quality. A much greater hindrance is the actual character recognition on 

the detected labels. This is a strong indicator for inability of the OCR system to deal with map 

fonts and overlapping features without at least further training. Common OCR engines seem to 

be trained exclusively on modern typeset fonts and struggle with the writing on maps. As a 

result we can determine out-of-the-box OCR software does not work satisfactorily on many 

“technical” stenciled fonts, such as in maps, and will probably be completely unusable on 

handwritten labels. This is evident from the evaluation of Strabo (Chiang and Knoblock 2014), 

with a reported 60% to 91% character recall on computer-generated map images from Yahoo 

and Google respectively, whereas we observe only limited results of far less than 50% recall in 

our test set of scanned historical maps. 
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 But even with further training on the required fonts, OCR is very sensitive to clutter in figure-

colour, especially when overlapping features are touching the characters. This is also the reason 

why we don’t try to detect umlaute and other diacritics, as they are hard to distinguish from the 

granular scanning noise and some pattern symbols (Figure 3, middle). Not detecting diacritical 

letters is acceptable, since most geocoding services use a fuzzy string matching which works 

quite well when only supplied with the basic glyph without diacritics. Still, OCR is very 

sensitive to letter outline defects, so morphological operations to reduce noise and clutter 

extremely harm recognition precision and should be used with care. In summary, OCR proved 

to be the biggest bottleneck for successful exploitation of map labels because of difficulties 

with map-fonts as well as clutter leading to badly recognised characters and words. 

 

   

 Figure 3. Deficiently detected text labels. Taken from map: TK25 Wandsbek (2004) 

 

Registration 

While DBSCAN-filtering successfully removes outliers which stem from geocoded location 

matches of places with similar names, there are still other cases that, while being technically 

correct matches, still provide erroneous GCPs. Especially in USGS maps the label detection 

and OCR recognise the names of townships at their centre or of counties along their respective 

boundary. For the maps in 1 : 250 000 these boundaries can be quite long and thus have been 

labelled multiple times. When querying these names in geocoding services, they usually return 

the name of the capital city which gave the name to the respective township or county. This 

will lead to ground control points, which are more or less in the right area but can distort the 

output georeferenced map image. Compare Figure 4, where OCR recognised township names 

in a 1 : 100 000 USGS map. The spatial clustering alone can’t help with this, instead some 

semantic handling to deal with these ambiguous designations will have to be investigated in the 

future. 

 We settled on mostly using thin plate spline transformation for rectifying map images, 

because polynomial transformations can shift the entire image to accommodate for minor 

displacements in the GCPs, which quickly leads to ill fits even at regions around correctly 

localised points. TPS transformations on the other hand lead to distorted map areas around 

misplaced GCPs, which might make the map unusable for further applications but is better 

suitable for understanding the source of distortions. Figure 4 shows the most problematic 

property of TPS: when an outlier is on the convex hull of the GCPs, it can quickly shift a big 

region of the image, even when all other points are correct. Here the top most point stems from 

the label of a township close to the edge of map, far distant from the actual township center, 

which is on the next map sheet. 

 The rectification performance is too bad for actual further use of the maps, but the georefer-

enced localisation of the map performs actually quite well considering this experimental 

approach under high uncertainty. To generally handle slightly imprecise GCPs, we just have 

too few successful localisations. Maybe a dictionary containing generally used terms, such as 

“marsh”, “lakes”, “forest” or “county”, could be used to remove some of the partially detected 
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designations, that lead to imprecise localisations. Generally, we need better results from OCR 

to use contextual information or allow averaging of errors as well as further experiments with 

transformation methods to elaborate on each methods ability to deal with outliers. 

 

  

Figure 4. Misplaced GCPs because of geocoding 
equating township names and settlement names.  

Map: USGS Aitkin (1994). 

Figure 5. Two successfully georeferenced map 
sheets with used GCPs (red) and ground-truth 

(blue) Maps: TK50 Langenhorn and Hamburg 

(1909, 1915) 

 

Future work 

The first step for both better recall in label detections as well as improved precision of OCR 

should be to enhance text-graphics separation, e.g. by symbol and line recognition (Chiang et 

al. 2006, Heitzler et al. 2018, Velázquez and Levachkine 2003). 

 Still, for the special use case of historical maps most OCR engines won’t work out of the 

box. We will have to evaluate specialised OCR models or train our own, to obtain sufficient 

accuracy on stenciled or even handwritten map text. Further training of the Strabo text detector 

might improve label detection for scanned maps as well. 

 An additional processing step is called for, using information about differently sized text to 

infer context information and hierarchy of labels. For example, this could help to determine 

whether some place names refers to a settlement, county, region or other feature type. Through 

this better defined search queries can be used while geocoding, to quickly converge on more 

precise location hypotheses. The same goes for the recurring ambiguous partial place names, 

resulting from text labels being split over multiple lines or because of wide character spacing. 

Connecting split text labels (Lin et al. 2018) should greatly facilitate place name matching. 
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 Another problem of geocoding is that the used web searches are very sensitive to single 

missing or incorrect letters in short queries, despite being able to correct some spelling mistakes. 

A better fuzzy string matching, that is more lenient to incorrect OCR results could help here, 

but might require a local copy of the place name database. 

 The positioning and size of a label alone can already create large geographical displace-ments. 

For large scale maps, where not many other features might be present that we can use to obtain 

more fine-grained alignment, a necessity to improve the accuracy will be to connect the labels to 

their respective positional markers, if present, as already explored by Budig et al. (2016). 

 When enough GCPs are left over from the geocoding step we are provided with an over 

defined solution for finding a transformation function. This can allow us to remove remaining 

outliers by minimising root-mean-square deviation residuals to increase accuracy from mis-

placed text labels and wrongly attributed toponyms. 

 Finally, the use of text labels alone for localisation of GCPS will probably not be precise 

enough for competing with manual georeferencing. Indeed we only intend it to be a first step 

of restricting the search space of candidate place matches and a coarse alignment and then 

further increasing the accuracy by using vectorised features for fine adjustments and stitching 

together multiple map sheets by other methods as proposed by Briggs and Li (2006) and Chen 

et al. (2004). 
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